Search results
Results from the WOW.Com Content Network
In condensed matter physics, the dynamic structure factor (or dynamical structure factor) is a mathematical function that contains information about inter-particle correlations and their time evolution. It is a generalization of the structure factor that considers correlations in both space and time.
Dynamic loads include people, wind, waves, traffic, earthquakes, and blasts. Any structure can be subjected to dynamic loading. Dynamic analysis can be used to find dynamic displacements, time history, and modal analysis. Structural analysis is mainly concerned with finding out the behavior of a physical structure when subjected to force.
In condensed matter physics and crystallography, the static structure factor (or structure factor for short) is a mathematical description of how a material scatters incident radiation. The structure factor is a critical tool in the interpretation of scattering patterns ( interference patterns ) obtained in X-ray , electron and neutron ...
Results are generally communicated as the dynamic structure factor (also called inelastic scattering law) (,), sometimes also as the dynamic susceptibility ′ ′ (,) where the scattering vector is the difference between incoming and outgoing wave vector, and is the energy change experienced by the sample (negative that of the scattered neutron).
In the moment distribution method, every joint of the structure to be analysed is fixed so as to develop the fixed-end moments.Then each fixed joint is sequentially released and the fixed-end moments (which by the time of release are not in equilibrium) are distributed to adjacent members until equilibrium is achieved.
In physics and engineering, a free body diagram (FBD; also called a force diagram) [1] is a graphical illustration used to visualize the applied forces, moments, and resulting reactions on a free body in a given condition. It depicts a body or connected bodies with all the applied forces and moments, and reactions, which act on the body(ies).
Campbell Diagram of a steam turbine. Analysis shows that there are well-damped critical speed at lower speed range. Analysis shows that there are well-damped critical speed at lower speed range. Another critical speed at mode 4 is observed at 7810 rpm (130 Hz) in dangerous vicinity of nominal shaft speed, but it has 30% damping - enough to ...
The length of the lines for members 1 and 4 in the diagram, multiplied with the chosen scale factor is the magnitude of the force in members 1 and 4. Now, in the same way the forces in members 2 and 6 can be found for joint C ; force in member 1 (going up/right), force in C going down, force in 2 (going down/left), force in 6 (going up/left ...