enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Closeness (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Closeness_(mathematics)

    Closeness is a basic concept in topology and related areas in mathematics.Intuitively, we say two sets are close if they are arbitrarily near to each other. The concept can be defined naturally in a metric space where a notion of distance between elements of the space is defined, but it can be generalized to topological spaces where we have no concrete way to measure distances.

  3. Closeness centrality - Wikipedia

    en.wikipedia.org/wiki/Closeness_centrality

    In the classic definition of the closeness centrality, the spread of information is modeled by the use of shortest paths. This model might not be the most realistic for all types of communication scenarios. Thus, related definitions have been discussed to measure closeness, like the random walk closeness centrality introduced by Noh and Rieger ...

  4. Closure (topology) - Wikipedia

    en.wikipedia.org/wiki/Closure_(topology)

    The definition of a point of closure of a set is closely related to the definition of a limit point of a set.The difference between the two definitions is subtle but important – namely, in the definition of a limit point of a set , every neighbourhood of must contain a point of other than itself, i.e., each neighbourhood of obviously has but it also must have a point of that is not equal to ...

  5. Closure (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Closure_(mathematics)

    Conversely, if closed sets are given and every intersection of closed sets is closed, then one can define a closure operator C such that () is the intersection of the closed sets containing X. This equivalence remains true for partially ordered sets with the greatest-lower-bound property , if one replace "closed sets" by "closed elements" and ...

  6. Closed set - Wikipedia

    en.wikipedia.org/wiki/Closed_set

    In geometry, topology, and related branches of mathematics, a closed set is a set whose complement is an open set. [1] [2] In a topological space, a closed set can be defined as a set which contains all its limit points. In a complete metric space, a closed set is a set which is closed under the limit operation.

  7. Open and closed maps - Wikipedia

    en.wikipedia.org/wiki/Open_and_closed_maps

    By definition, the map : is a relatively closed map if and only if the surjection: ⁡ is a strongly closed map. If in the open set definition of "continuous map" (which is the statement: "every preimage of an open set is open"), both instances of the word "open" are replaced with "closed" then the statement of results ("every preimage of a ...

  8. Near sets - Wikipedia

    en.wikipedia.org/wiki/Near_sets

    Near sets have a variety of applications in areas such as topology, pattern detection and classification, abstract algebra, mathematics in computer science, and solving a variety of problems based on human perception that arise in areas such as image analysis, image processing, face recognition, ethology, as well as engineering and science ...

  9. Algebraically closed group - Wikipedia

    en.wikipedia.org/wiki/Algebraically_closed_group

    Every algebraically closed group is simple. No algebraically closed group is finitely generated. An algebraically closed group cannot be recursively presented. A finitely generated group has a solvable word problem if and only if it can be embedded in every algebraically closed group. The proofs of these results are in general very complex.