Search results
Results from the WOW.Com Content Network
Xylem is one of the two types of transport tissue in vascular plants, the other being phloem; both of these are part of the vascular bundle. The basic function of the xylem is to transport water upward from the roots to parts of the plants such as stems and leaves, but it also transports nutrients .
Vascular tissue is a complex conducting tissue, formed of more than one cell type, found in vascular plants. The primary components of vascular tissue are the xylem and phloem. These two tissues transport fluid and nutrients internally. There are also two meristems associated with vascular tissue: the vascular cambium and the cork cambium.
Both these tissues are present in a vascular bundle, which in addition will include supporting and protective tissues. There is also a tissue between xylem and phloem, which is the cambium. The xylem typically lies towards the axis with phloem positioned away from the axis . In a stem or root this means that the xylem is closer to the centre of ...
Like all vascular plants, trees use two vascular tissues for transportation of water and nutrients: the xylem (also known as the wood) and the phloem (the innermost layer of the bark). Girdling results in the removal of the phloem, and death occurs from the inability of the leaves to transport sugars (primarily sucrose) to the roots.
In plant anatomy, tissues are categorized broadly into three tissue systems: the epidermis, the ground tissue, and the vascular tissue. Epidermis – Cells forming the outer surface of the leaves and of the young plant body. Vascular tissue – The primary components of vascular tissue are the xylem and phloem. These transport fluids and ...
Xylem is the water-conducting tissue, and the secondary xylem provides the raw material for the forest products industry. [26] Xylem and phloem tissues each play a part in the conduction processes within plants. Sugars are conveyed throughout the plant in the phloem; water and other nutrients pass through the xylem.
The fascicular and interfascicular cambia thus join up to form a ring (in three dimensions, a tube) which separates the primary xylem and primary phloem, the cambium ring. The vascular cambium produces secondary xylem on the inside of the ring, and secondary phloem on the outside, pushing the primary xylem and phloem apart.
Stems have two pipe-like tissues called xylem and phloem. The xylem tissue arises from the cell facing inside and transports water by the action of transpiration pull, capillary action, and root pressure. The phloem tissue arises from the cell facing outside and consists of sieve tubes and their companion cells. The function of phloem tissue is ...