Search results
Results from the WOW.Com Content Network
For the purposes of ray tracing, this is equivalent to a series of identical thin lenses of focal length f = R/2, each separated from the next by length d. This construction is known as a lens equivalent duct or lens equivalent waveguide.
The transfer-matrix method is a method used in optics and acoustics to analyze the propagation of electromagnetic or acoustic waves through a stratified medium; a stack of thin films. [ 1 ] [ 2 ] This is, for example, relevant for the design of anti-reflective coatings and dielectric mirrors .
The signs are reversed for the back surface of the lens: R 2 is positive if the surface is concave, and negative if it is convex. This is an arbitrary sign convention; some authors choose different signs for the radii, which changes the equation for the focal length. For a thin lens, d is much smaller than one of the radii of curvature (either ...
The points that span conjugate planes are called conjugate points. [ 3 ] For a thin lens or a curved mirror , 1 u + 1 v = 1 f , {\displaystyle {1 \over u}+{1 \over v}={1 \over f},} where u is the distance from the object to the center of the lens or mirror, v is the distance from the lens or mirror to the image, and f is the focal length of the ...
Thin lenses produce focal points on either side that can be modeled using the lensmaker's equation. [5] In general, two types of lenses exist: convex lenses, which cause parallel light rays to converge, and concave lenses, which cause parallel light rays to diverge. The detailed prediction of how images are produced by these lenses can be made ...
Normally, the lens and image (film or sensor) planes of a camera are parallel, and the plane of focus (PoF) is parallel to the lens and image planes. If a planar subject (such as the side of a building) is also parallel to the image plane, it can coincide with the PoF, and the entire subject can be rendered sharply.
In weak lensing by large-scale structure, the thin-lens approximation may break down, and low-density extended structures may not be well approximated by multiple thin-lens planes. In this case, the deflection can be derived by instead assuming that the gravitational potential is slowly varying everywhere (for this reason, this approximation is ...
In geometric optics, the paraxial approximation is a small-angle approximation used in Gaussian optics and ray tracing of light through an optical system (such as a lens). [ 1 ] [ 2 ] A paraxial ray is a ray that makes a small angle ( θ ) to the optical axis of the system, and lies close to the axis throughout the system. [ 1 ]