enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Echo state network - Wikipedia

    en.wikipedia.org/wiki/Echo_state_network

    Alternatively, one may consider a nonparametric Bayesian formulation of the output layer, under which: (i) a prior distribution is imposed over the output weights; and (ii) the output weights are marginalized out in the context of prediction generation, given the training data.

  3. Long short-term memory - Wikipedia

    en.wikipedia.org/wiki/Long_short-term_memory

    The Long Short-Term Memory (LSTM) cell can process data sequentially and keep its hidden state through time. Long short-term memory (LSTM) [1] is a type of recurrent neural network (RNN) aimed at mitigating the vanishing gradient problem [2] commonly encountered by traditional RNNs.

  4. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    [55] [86] LSTM combined with a BPTT/RTRL hybrid learning method attempts to overcome these problems. [36] This problem is also solved in the independently recurrent neural network (IndRNN) [ 87 ] by reducing the context of a neuron to its own past state and the cross-neuron information can then be explored in the following layers.

  5. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    High-quality labeled training datasets for supervised and semi-supervised machine learning algorithms are usually difficult and expensive to produce because of the large amount of time needed to label the data. Although they do not need to be labeled, high-quality datasets for unsupervised learning can also be difficult and costly to produce ...

  6. Bayesian learning mechanisms - Wikipedia

    en.wikipedia.org/wiki/Bayesian_learning_mechanisms

    Bayesian learning mechanisms are probabilistic causal models [1] used in computer science to research the fundamental underpinnings of machine learning, and in cognitive neuroscience, to model conceptual development. [2] [3]

  7. Types of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Types_of_artificial_neural...

    It works even when with long delays between inputs and can handle signals that mix low and high frequency components. LSTM RNN outperformed other RNN and other sequence learning methods such as HMM in applications such as language learning [62] and connected handwriting recognition. [63]

  8. Recursive Bayesian estimation - Wikipedia

    en.wikipedia.org/wiki/Recursive_Bayesian_estimation

    In probability theory, statistics, and machine learning, recursive Bayesian estimation, also known as a Bayes filter, is a general probabilistic approach for estimating an unknown probability density function recursively over time using incoming measurements and a mathematical process model.

  9. Neural network Gaussian process - Wikipedia

    en.wikipedia.org/wiki/Neural_network_Gaussian...

    Bayesian networks are a modeling tool for assigning probabilities to events, and thereby characterizing the uncertainty in a model's predictions. Deep learning and artificial neural networks are approaches used in machine learning to build computational models which learn from training examples. Bayesian neural networks merge