Search results
Results from the WOW.Com Content Network
The homological mirror symmetry conjecture of Maxim Kontsevich states that the derived category of coherent sheaves on one Calabi–Yau manifold is equivalent in a certain sense to the Fukaya category of its mirror. [54] This equivalence provides a precise mathematical formulation of mirror symmetry in topological string theory.
It indicates the mathematical group for the topological invariant of the topological insulators and topological superconductors, given a dimension and discrete symmetry class. [1] The ten possible discrete symmetry families are classified according to three main symmetries: particle-hole symmetry , time-reversal symmetry and chiral symmetry .
For example, if two topological objects have different homotopy groups, they cannot have the same topological structure—a fact that may be difficult to prove using only topological means. For example, the torus is different from the sphere: the torus has a "hole"; the sphere doesn't. However, since continuity (the basic notion of topology ...
The existence of a topological defect can be demonstrated whenever the boundary conditions entail the existence of homotopically distinct solutions. Typically, this occurs because the boundary on which the conditions are specified has a non-trivial homotopy group which is preserved in differential equations; the solutions to the differential equations are then topologically distinct, and are ...
In mathematics, mirror symmetry is a conjectural relationship between certain Calabi–Yau manifolds and a constructed "mirror manifold". The conjecture allows one to relate the number of rational curves on a Calabi-Yau manifold (encoded as Gromov–Witten invariants) to integrals from a family of varieties (encoded as period integrals on a variation of Hodge structures).
Mirror symmetry not only replaces the homological dimensions but also the symplectic structure and complex structure on the mirror pairs. That is the origin of homological mirror symmetry. In 1990-1991, Candelas et al. 1991 had a major impact not only on enumerative algebraic geometry but on the whole mathematics and motivated Kontsevich (1994).
The (p,−q) torus knot is the obverse (mirror image) of the (p,q) torus knot. [5] The (−p,−q) torus knot is equivalent to the (p,q) torus knot except for the reversed orientation. The (3, 4) torus knot on the unwrapped torus surface, and its braid word. Any (p,q)-torus knot can be made from a closed braid with p strands.
The R-symmetry group of a 2-dimensional N = (2,2) field theory is U(1) × U(1), twists by the two different factors lead to the A and B models respectively. The topological twisted construction of topological string theories was introduced by Edward Witten in his 1988 paper. [1]