Search results
Results from the WOW.Com Content Network
Example graph that has a vertex cover comprising 2 vertices (bottom), but none with fewer. In graph theory, a vertex cover (sometimes node cover) of a graph is a set of vertices that includes at least one endpoint of every edge of the graph. In computer science, the problem of finding a minimum vertex cover is a classical optimization problem.
The most prominent examples of covering problems are the set cover problem, which is equivalent to the hitting set problem, and its special cases, the vertex cover problem and the edge cover problem. Covering problems allow the covering primitives to overlap; the process of covering something with non-overlapping primitives is called decomposition.
The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric. [3]: ND22, ND23
In fluid dynamics, angle of attack (AOA, α, or ) is the angle between a reference line on a body (often the chord line of an airfoil) and the vector representing the relative motion between the body and the fluid through which it is moving. [1] Angle of attack is the angle between the body's reference line and the oncoming flow.
An example of a bipartite graph, with a maximum matching (blue) and minimum vertex cover (red) both of size six. In the mathematical area of graph theory, Kőnig's theorem, proved by Dénes Kőnig (), describes an equivalence between the maximum matching problem and the minimum vertex cover problem in bipartite graphs.
Another problem in subdivision containment is the Kelmans–Seymour conjecture: Every 5-vertex-connected graph that is not planar contains a subdivision of the 5-vertex complete graph K 5. Another class of problems has to do with the extent to which various species and generalizations of graphs are determined by their point-deleted subgraphs ...
A simple example of an approximation algorithm is one for the minimum vertex cover problem, where the goal is to choose the smallest set of vertices such that every edge in the input graph contains at least one chosen vertex. One way to find a vertex cover is to repeat the following process: find an uncovered edge, add both its endpoints to the ...
In the above example, each vertex of H has exactly 2 preimages in C. Hence C is a 2-fold cover or a double cover of H. For any graph G, it is possible to construct the bipartite double cover of G, which is a bipartite graph and a double cover of G. The bipartite double cover of G is the tensor product of graphs G × K 2: