Search results
Results from the WOW.Com Content Network
Tonotopic organization in the cochlea forms throughout pre- and post-natal development through a series of changes that occur in response to auditory stimuli. [7] Research suggests that the pre-natal establishment of tonotopic organization is partially guided by synaptic reorganization; however, more recent studies have shown that the early changes and refinements occur at both the circuit and ...
The tonotopic layout of sound information begins in the cochlea where the basilar membrane vibrates at different positions along its length depending upon the frequency of the sound. Higher frequency sounds are at the base of the cochlea, if it were unrolled, and low frequency sounds are at the apex.
As the basilar membrane vibrates, each clump of hair cells along its length is deflected in time with the sound components as filtered by basilar membrane tuning for its position. The more intense this vibration is, the more the hair cells are deflected and the more likely they are to cause cochlear nerve firings. Temporal theory supposes that ...
An example is the somatosensory map which is a projection of the skin's surface in the brain that arranges the processing of tactile sensation. This type of somatotopic map is the most common, possibly because it allows for physically neighboring areas of the brain to react to physically similar stimuli in the periphery or because it allows for ...
Tonotopic mapping is preserved throughout most of the audition circuit. The primary auditory cortex receives direct input from the medial geniculate nucleus of the thalamus and thus is thought to identify the fundamental elements of music, such as pitch and loudness.
[6] [7] The ERB can be converted into a scale that relates to frequency and shows the position of the auditory filter along the basilar membrane. For example, ERB = 3.36 Hz corresponds to a frequency at the apical end of the basilar membrane, whereas ERB = 38.9 Hz corresponds to the base, and a value of 19.5 Hz falls half-way between the two. [6]
This approach proved to be a successful method for several applications such as 3D retinotopic mapping in the rodent brain [15] [16] and 3D tonotopic mapping of the auditory system in ferrets. [11] The second approach relies on high frequency 2D matrix array transducer technology coupled with a high channel count electronic system for fast 3D ...
The mid frequency projections end up in between the two extremes; in this way the tonotopic organization that is established in the cochlea is preserved in the cochlear nuclei. This tonotopic organization is preserved because only a few inner hair cells synapse on the dendrites of a nerve cell in the spiral ganglion, and the axon from that ...