Search results
Results from the WOW.Com Content Network
In epidemiology, a rate ratio, sometimes called an incidence density ratio or incidence rate ratio, is a relative difference measure used to compare the incidence rates of events occurring at any given point in time. It is defined as:
In contrast, a disease that has a short duration may have a low prevalence and a high incidence. When the incidence is approximately constant for the duration of the disease, prevalence is approximately the product of disease incidence and average disease duration, so prevalence = incidence × duration. The importance of this equation is in the ...
The Hubbert curve is an approximation of the production rate of a resource over time. It is a symmetric logistic distribution curve, [ 1 ] often confused with the "normal" gaussian function . It first appeared in "Nuclear Energy and the Fossil Fuels," geologist M. King Hubbert 's 1956 presentation to the American Petroleum Institute , as an ...
The crude death rate is defined as "the mortality rate from all causes of death for a population," calculated as the "total number of deaths during a given time interval" divided by the "mid-interval population", per 1,000 or 100,000; for instance, the population of the United States was around 290,810,000 in 2003, and in that year, approximately 2,419,900 deaths occurred in total, giving a ...
Standardized mortality rate tells how many persons, per thousand of the population, will die in a given year and what the causes of death will be. Such statistics have many uses: [ citation needed ] Life insurance companies periodically update their premiums based on the mortality rate , adjusted for age.
In statistics, probability density estimation or simply density estimation is the construction of an estimate, based on observed data, of an unobservable underlying probability density function. The unobservable density function is thought of as the density according to which a large population is distributed; the data are usually thought of as ...
In epidemiology, force of infection (denoted ) is the rate at which susceptible individuals acquire an infectious disease. [1] Because it takes account of susceptibility it can be used to compare the rate of transmission between different groups of the population for the same infectious disease, or even between different infectious diseases.
Thus the force of mortality at these ages is zero. The force of mortality μ(x) uniquely defines a probability density function f X (x). The force of mortality () can be interpreted as the conditional density of failure at age x, while f(x) is the unconditional density of failure at age x. [1]