enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Newton's theorem of revolving orbits - Wikipedia

    en.wikipedia.org/wiki/Newton's_theorem_of...

    Newton's theorem of revolving orbits was his first attempt to understand apsidal precession quantitatively. According to this theorem, the addition of a particular type of central force—the inverse-cube force—can produce a rotating orbit; the angular speed is multiplied by a factor k , whereas the radial motion is left unchanged.

  3. Apsidal precession - Wikipedia

    en.wikipedia.org/wiki/Apsidal_precession

    Newton derived an early theorem which attempted to explain apsidal precession. This theorem is historically notable, but it was never widely used and it proposed forces which have been found not to exist, making the theorem invalid. This theorem of revolving orbits remained largely unknown and undeveloped for over three centuries until 1995. [14]

  4. Orbit equation - Wikipedia

    en.wikipedia.org/wiki/Orbit_equation

    In astrodynamics, an orbit equation defines the path of orbiting body around central body relative to , without specifying position as a function of time.Under standard assumptions, a body moving under the influence of a force, directed to a central body, with a magnitude inversely proportional to the square of the distance (such as gravity), has an orbit that is a conic section (i.e. circular ...

  5. Orbital mechanics - Wikipedia

    en.wikipedia.org/wiki/Orbital_mechanics

    For near-parabolic orbits, eccentricity is nearly 1, and substituting = into the formula for mean anomaly, ⁡, we find ourselves subtracting two nearly-equal values, and accuracy suffers. For near-circular orbits, it is hard to find the periapsis in the first place (and truly circular orbits have no periapsis at all).

  6. De motu corporum in gyrum - Wikipedia

    en.wikipedia.org/wiki/De_motu_corporum_in_gyrum

    Later, in 1686, when Newton's Principia had been presented to the Royal Society, Hooke claimed from this correspondence the credit for some of Newton's content in the Principia, and said Newton owed the idea of an inverse-square law of attraction to him – although at the same time, Hooke disclaimed any credit for the curves and trajectories ...

  7. De analysi per aequationes numero terminorum infinitas

    en.wikipedia.org/wiki/De_analysi_per_aequationes...

    Composed in 1669, [4] during the mid-part of that year probably, [5] from ideas Newton had acquired during the period 1665–1666. [4] Newton wrote And whatever the common Analysis performs by Means of Equations of a finite number of Terms (provided that can be done) this new method can always perform the same by means of infinite Equations.

  8. Classical central-force problem - Wikipedia

    en.wikipedia.org/wiki/Classical_central-force...

    In classical mechanics, the central-force problem is to determine the motion of a particle in a single central potential field.A central force is a force (possibly negative) that points from the particle directly towards a fixed point in space, the center, and whose magnitude only depends on the distance of the object to the center.

  9. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    Taking the square root of both sides and expanding using the binomial theorem yields the formula = (+) Multiplying by the period T of one revolution gives the precession of the orbit per revolution = () = where we have used ω φ T = 2 π and the definition of the length-scale a.