Search results
Results from the WOW.Com Content Network
Radius of gyration (in polymer science)(, unit: nm or SI unit: m): For a macromolecule composed of mass elements, of masses , =1,2,…,, located at fixed distances from the centre of mass, the radius of gyration is the square-root of the mass average of over all mass elements, i.e.,
Right-triangular prism: b = the base side of the prism's triangular base, h = the perpendicular side of the prism's triangular base L = the length of the prism Right circular cylinder: r = the radius of the cylinder
Regular polygons; Description Figure Second moment of area Comment A filled regular (equiliteral) triangle with a side length of a = = [6] The result is valid for both a horizontal and a vertical axis through the centroid, and therefore is also valid for an axis with arbitrary direction that passes through the origin.
The given formula is for the plane passing through the center of mass, which coincides with the geometric center of the cylinder. If the xy plane is at the base of the cylinder, i.e. offset by =, then by the parallel axis theorem the following formula applies:
Although they have different units, the gyration tensor is related to the moment of inertia tensor. The key difference is that the particle positions are weighted by mass in the inertia tensor, whereas the gyration tensor depends only on the particle positions; mass plays no role in defining the gyration tensor.
Area#Area formulas – Size of a two-dimensional surface; Perimeter#Formulas – Path that surrounds an area; List of second moments of area; List of surface-area-to-volume ratios – Surface area per unit volume; List of surface area formulas – Measure of a two-dimensional surface; List of trigonometric identities
The Pythagoreans dealt with the regular solids, but the pyramid, prism, cone and cylinder were not studied until the Platonists. Eudoxus established their measurement, proving the pyramid and cone to have one-third the volume of a prism and cylinder on the same base and of the same height.
Measurement of the scattering intensity at many angles allows calculation of the root mean square radius, also called the radius of gyration R g. By measuring the scattering intensity for many samples of various concentrations, the second virial coefficient, A 2 , can be calculated.