Search results
Results from the WOW.Com Content Network
As there is zero X n+1 or X −1 in (1 + X) n, one might extend the definition beyond the above boundaries to include () = when either k > n or k < 0. This recursive formula then allows the construction of Pascal's triangle, surrounded by white spaces where the zeros, or the trivial coefficients, would be.
The simplest example given by Thimbleby of a possible problem when using an immediate-execution calculator is 4 × (−5). As a written formula the value of this is −20 because the minus sign is intended to indicate a negative number, rather than a subtraction, and this is the way that it would be interpreted by a formula calculator.
In mathematics, a combination is a selection of items from a set that has distinct members, such that the order of selection does not matter (unlike permutations).For example, given three fruits, say an apple, an orange and a pear, there are three combinations of two that can be drawn from this set: an apple and a pear; an apple and an orange; or a pear and an orange.
Here () denotes the sum of the base-digits of , and the exponent given by this formula can also be interpreted in advanced mathematics as the p-adic valuation of the factorial. [54] Applying Legendre's formula to the product formula for binomial coefficients produces Kummer's theorem , a similar result on the exponent of each prime in the ...
Because the remainder R m,n in the Euler–Maclaurin formula satisfies , =, + (), where big-O notation is used, combining the equations above yields the approximation formula in its logarithmic form: (!
(n factorial) is the number of n-permutations; !n (n subfactorial) is the number of derangements – n-permutations where all of the n elements change their initial places. In combinatorial mathematics , a derangement is a permutation of the elements of a set in which no element appears in its original position.
Given real numbers x and y, integers m and n and the set of integers, floor and ceiling may be defined by the equations ⌊ ⌋ = {}, ⌈ ⌉ = {}. Since there is exactly one integer in a half-open interval of length one, for any real number x, there are unique integers m and n satisfying the equation
By taking conjugates, the number p k (n) of partitions of n into exactly k parts is equal to the number of partitions of n in which the largest part has size k. The function p k (n) satisfies the recurrence p k (n) = p k (n − k) + p k−1 (n − 1) with initial values p 0 (0) = 1 and p k (n) = 0 if n ≤ 0 or k ≤ 0 and n and k are not both ...