Search results
Results from the WOW.Com Content Network
Given an Euler brick with edge-lengths (a, b, c), the triple (bc, ac, ab) constitutes an Euler brick as well. [1]: p. 106 Exactly one edge and two face diagonals of a primitive Euler brick are odd. At least two edges of an Euler brick are divisible by 3. [1]: p. 106 At least two edges of an Euler brick are divisible by 4. [1]: p. 106
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
Euler's argument shows that a necessary condition for the walk of the desired form is that the graph be connected and have exactly zero or two nodes of odd degree. This condition turns out also to be sufficient—a result stated by Euler and later proved by Carl Hierholzer. Such a walk is now called an Eulerian trail or Euler walk in his honor ...
A rectangular cuboid with integer edges, as well as integer face diagonals, is called an Euler brick; for example with sides 44, 117, and 240. A perfect cuboid is an Euler brick whose space diagonal is also an integer. It is currently unknown whether a perfect cuboid actually exists. [7]
The question of minimizing the number of crossings in drawings of complete bipartite graphs is known as Turán's brick factory problem, and for , the minimum number of crossings is one. K 3 , 3 {\displaystyle K_{3,3}} is a graph with six vertices and nine edges, often referred to as the utility graph in reference to the problem. [ 1 ]
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
Chapter 13 relates Pythagorean triangles to rational points on a unit circle, Chapter 14 discusses right triangles whose sides are unit fractions rather than integers, and Chapter 15 is about the Euler brick problem, a three-dimensional generalization of Pythagorean triangles, and related problems on integer-sided tetrahedra.
The first nine blocks in the solution to the single-wide block-stacking problem with the overhangs indicated. In statics, the block-stacking problem (sometimes known as The Leaning Tower of Lire (Johnson 1955), also the book-stacking problem, or a number of other similar terms) is a puzzle concerning the stacking of blocks at the edge of a table.