enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gravitational lens - Wikipedia

    en.wikipedia.org/wiki/Gravitational_lens

    In general relativity, light follows the curvature of spacetime, hence when light passes around a massive object, it is bent. This means that the light from an object on the other side will be bent towards an observer's eye, just like an ordinary lens. In general relativity the path of light depends on the shape of space (i.e. the metric).

  3. Lightbulb socket - Wikipedia

    en.wikipedia.org/wiki/Lightbulb_socket

    GY6.35 & GZ6.35 – same as G6.35 and only denote what lamp mount clip is needed to hold the actual light bulb in place; G8 – 8 mm (0.31496 in) pin spacing GU8 – same as G8 and only denotes what lamp mount clip is needed to hold the actual light bulb in place; GY8.6 – 8.6 mm (0.33858 in) pin spacing; G9 – 9 mm (0.35433 in) pin spacing

  4. Crookes radiometer - Wikipedia

    en.wikipedia.org/wiki/Crookes_radiometer

    If light pressure were the cause of the rotation, then the better the vacuum in the bulb, the less air resistance to movement, and the faster the vanes should spin. In 1901, with a better vacuum pump, Pyotr Lebedev showed that in fact, the radiometer only works when there is low-pressure gas in the bulb, and the vanes stay motionless in a hard ...

  5. Speed of gravity - Wikipedia

    en.wikipedia.org/wiki/Speed_of_gravity

    The speed of gravitational waves in the general theory of relativity is equal to the speed of light in vacuum, c. [3] Within the theory of special relativity, the constant c is not only about light; instead it is the highest possible speed for any interaction in nature.

  6. Gravitational time dilation - Wikipedia

    en.wikipedia.org/wiki/Gravitational_time_dilation

    Gravitational time dilation is closely related to gravitational redshift, [4] in which the closer a body emitting light of constant frequency is to a gravitating body, the more its time is slowed by gravitational time dilation, and the lower (more "redshifted") would seem to be the frequency of the emitted light, as measured by a fixed observer.

  7. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    For example, the Schwarzschild radius r s of the Earth is roughly 9 mm (3 ⁄ 8 inch); at the surface of the Earth, the corrections to Newtonian gravity are only one part in a billion. The Schwarzschild radius of the Sun is much larger, roughly 2953 meters, but at its surface, the ratio r s / r is roughly 4 parts in a million.

  8. Radiation pressure - Wikipedia

    en.wikipedia.org/wiki/Radiation_pressure

    Therefore, the absorption of this radiation leads to a force with a component against the direction of movement. (The angle of aberration is tiny, since the radiation is moving at the speed of light, while the dust grain is moving many orders of magnitude slower than that.) The result is a gradual spiral of dust grains into the Sun.

  9. Gravitational redshift - Wikipedia

    en.wikipedia.org/wiki/Gravitational_redshift

    The gravitational weakening of light from high-gravity stars was predicted by John Michell in 1783 and Pierre-Simon Laplace in 1796, using Isaac Newton's concept of light corpuscles (see: emission theory) and who predicted that some stars would have a gravity so strong that light would not be able to escape.