enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Positive linear functional - Wikipedia

    en.wikipedia.org/wiki/Positive_linear_functional

    If contains an interior point of then every continuous positive linear form on has an extension to a continuous positive linear form on . Corollary : [ 1 ] Let X {\displaystyle X} be an ordered vector space with positive cone C , {\displaystyle C,} let M {\displaystyle M} be a vector subspace of E , {\displaystyle E,} and let f {\displaystyle f ...

  3. Gelfand–Naimark–Segal construction - Wikipedia

    en.wikipedia.org/wiki/Gelfand–Naimark–Segal...

    Any positive linear functionals on dominated by is of the form = (), for some positive operator in () ′ with in the operator order. This is a version of the Radon–Nikodym theorem . For such g {\displaystyle g} , one can write f {\displaystyle f} as a sum of positive linear functionals: f = g + g ′ {\displaystyle f=g+g'} .

  4. State (functional analysis) - Wikipedia

    en.wikipedia.org/wiki/State_(functional_analysis)

    A proof can be sketched as follows: Let be the weak*-compact set of positive linear functionals on with norm ≤ 1, and () be the continuous functions on . A {\displaystyle A} can be viewed as a closed linear subspace of C ( Ω ) {\displaystyle C(\Omega )} (this is Kadison 's function representation ).

  5. Order dual (functional analysis) - Wikipedia

    en.wikipedia.org/wiki/Order_dual_(functional...

    In mathematics, specifically in order theory and functional analysis, the order dual of an ordered vector space is the set ⁡ ⁡ where ⁡ denotes the set of all positive linear functionals on , where a linear function on is called positive if for all , implies () [1] The order dual of is denoted by +.

  6. Linear form - Wikipedia

    en.wikipedia.org/wiki/Linear_form

    Continuous linear functionals have nice properties for analysis: a linear functional is continuous if and only if its kernel is closed, [14] and a non-trivial continuous linear functional is an open map, even if the (topological) vector space is not complete.

  7. Functional analysis - Wikipedia

    en.wikipedia.org/wiki/Functional_analysis

    These modes are eigenfunctions of a linear operator on a function space, a common construction in functional analysis. Functional analysis is a branch of mathematical analysis , the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (for example, inner product , norm , or topology ) and the ...

  8. Positive linear operator - Wikipedia

    en.wikipedia.org/wiki/Positive_linear_operator

    A linear function on a preordered vector space is called positive if it satisfies either of the following equivalent conditions: . implies (); if then () (). [1]; The set of all positive linear forms on a vector space with positive cone , called the dual cone and denoted by , is a cone equal to the polar of .

  9. Radon measure - Wikipedia

    en.wikipedia.org/wiki/Radon_measure

    Conversely, by the Riesz–Markov–Kakutani representation theorem, each positive linear form on K (X) arises as integration with respect to a unique regular Borel measure. A real-valued Radon measure is defined to be any continuous linear form on K ( X ) ; they are precisely the differences of two Radon measures.