Search results
Results from the WOW.Com Content Network
In fractions like "2 nanometers per meter" (2 n m / m = 2 nano = 2×10 −9 = 2 ppb = 2 × 0.000 000 001), so the quotients are pure-number coefficients with positive values less than or equal to 1. When parts-per notations, including the percent symbol (%), are used in regular prose (as opposed to mathematical expressions), they are still pure ...
When a real number like .007 is denoted alternatively by 7.0 × 10 —3 then it is said that the number is represented in scientific notation.More generally, to write a number in the form a × 10 b, where 1 <= a < 10 and b is an integer, is to express it in scientific notation, and a is called the significand or the mantissa, and b is its exponent. [3]
This led to the approximation that 100-proof spirit has an ABV of 4 ⁄ 7. From this, it follows that to convert the ABV expressed as a percentage to degrees proof, it is only necessary to multiply the ABV by 7 ⁄ 4. Thus pure 100% alcohol will have 100×(7 ⁄ 4) = 175 proof, and a spirit containing 40% ABV will have 40×(7 ⁄ 4) = 70 proof.
Two whole numbers m and n are called coprime if their greatest common divisor is 1, that is, if there is no prime number that divides both of them. Then an arithmetic function a is additive if a(mn) = a(m) + a(n) for all coprime natural numbers m and n; multiplicative if a(1) = 1 and a(mn) = a(m)a(n) for all coprime natural numbers m and n.
For example, in a recipe that calls for 10 pounds of flour and 5 pounds of water, the corresponding baker's percentages are 100% for the flour and 50% for the water. Because these percentages are stated with respect to the weight of flour rather than with respect to the weight of all ingredients, the sum of these percentages always exceeds 100%.
The first use of an equals sign, equivalent to 14x+15=71 in modern notation.From The Whetstone of Witte (1557) by Robert Recorde. Recorde's introduction of "=" Before the 16th century, there was no common symbol for equality, and equality was usually expressed with a word, such as aequales, aequantur, esgale, faciunt, ghelijck, or gleich, and sometimes by the abbreviated form aeq, or simply æ ...
Weinberger (1973) showed that the generalized Riemann hypothesis for the zeta functions of all algebraic number fields implies that any number field with class number 1 is either Euclidean or an imaginary quadratic number field of discriminant −19, −43, −67, or −163.
In mathematics, exponentiation, denoted b n, is an operation involving two numbers: the base, b, and the exponent or power, n. [1] When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, b n is the product of multiplying n bases: [1] = ⏟.