enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Heron's formula - Wikipedia

    en.wikipedia.org/wiki/Heron's_formula

    Heron's formula is a special case of Brahmagupta's formula for the area of a cyclic quadrilateral. Heron's formula and Brahmagupta's formula are both special cases of Bretschneider's formula for the area of a quadrilateral. Heron's formula can be obtained from Brahmagupta's formula or Bretschneider's formula by setting one of the sides of the ...

  3. Heronian triangle - Wikipedia

    en.wikipedia.org/wiki/Heronian_triangle

    In geometry, a Heronian triangle (or Heron triangle) is a triangle whose side lengths a, b, and c and area A are all positive integers. [ 1 ] [ 2 ] Heronian triangles are named after Heron of Alexandria , based on their relation to Heron's formula which Heron demonstrated with the example triangle of sides 13, 14, 15 and area 84 .

  4. Area of a triangle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_triangle

    The above formula is known as the shoelace formula or the surveyor's formula. If we locate the vertices in the complex plane and denote them in counterclockwise sequence as a = x A + y A i , b = x B + y B i , and c = x C + y C i , and denote their complex conjugates as a ¯ {\displaystyle {\bar {a}}} , b ¯ {\displaystyle {\bar {b}}} , and c ...

  5. Brahmagupta's formula - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta's_formula

    This formula generalizes Heron's formula for the area of a triangle. A triangle may be regarded as a quadrilateral with one side of length zero. From this perspective, as d approaches zero, a cyclic quadrilateral converges into a cyclic triangle (all triangles are cyclic), and Brahmagupta's formula simplifies to Heron's formula.

  6. Qin Jiushao - Wikipedia

    en.wikipedia.org/wiki/Qin_Jiushao

    In geometry, he discovered "Qin Jiushao's formula" for finding the area of a triangle from the given lengths of three sides. This formula is the same as Heron's formula , proved by Heron of Alexandria about 60 BCE, though knowledge of the formula may go back to Archimedes .

  7. Bretschneider's formula - Wikipedia

    en.wikipedia.org/wiki/Bretschneider's_formula

    Bretschneider's formula generalizes Brahmagupta's formula for the area of a cyclic quadrilateral, which in turn generalizes Heron's formula for the area of a triangle.. The trigonometric adjustment in Bretschneider's formula for non-cyclicality of the quadrilateral can be rewritten non-trigonometrically in terms of the sides and the diagonals e and f to give [2] [3]

  8. Solution of triangles - Wikipedia

    en.wikipedia.org/wiki/Solution_of_triangles

    Solution of triangles (Latin: solutio triangulorum) is the main trigonometric problem of finding the characteristics of a triangle (angles and lengths of sides), when some of these are known. The triangle can be located on a plane or on a sphere. Applications requiring triangle solutions include geodesy, astronomy, construction, and navigation.

  9. Cayley–Menger determinant - Wikipedia

    en.wikipedia.org/wiki/Cayley–Menger_determinant

    Menger extended Cayley's algebraic results to propose a new axiom of metric spaces using the concepts of distance geometry up to congruence equivalence, known as the Cayley–Menger determinant. This ended up generalising one of the first discoveries in distance geometry, Heron's formula, which computes the area of a triangle given its side ...