Search results
Results from the WOW.Com Content Network
In particle physics, proton decay is a hypothetical form of particle decay in which the proton decays into lighter subatomic particles, such as a neutral pion and a positron. [1] The proton decay hypothesis was first formulated by Andrei Sakharov in 1967. Despite significant experimental effort, proton decay has never been observed.
In the Print/export section select Download as PDF. The rendering engine starts and a dialog appears to show the rendering progress. When rendering is complete, the dialog shows "The document file has been generated. Download the file to your computer." Click the download link to open the PDF in your selected PDF viewer.
In particle physics, particle decay is the spontaneous process of one unstable subatomic particle transforming into multiple other particles. The particles created in this process (the final state ) must each be less massive than the original, although the total mass of the system must be conserved.
IMB detected fast-moving particles such as those produced by proton decay or neutrino interactions by picking up the Cherenkov radiation generated when such a particle moves faster than light's speed in water. Since directional information was available from the phototubes, IMB was able to estimate the initial direction of neutrinos.
See § Future without proton decay below. Shorter or longer proton half-lives will accelerate or decelerate the process. This means that after 10 40 years (the maximum proton half-life used by Adams & Laughlin (1997)), one-half of all baryonic matter will have been converted into gamma ray photons and leptons through proton decay.
Proton emission (also known as proton radioactivity) is a rare type of radioactive decay in which a proton is ejected from a nucleus.Proton emission can occur from high-lying excited states in a nucleus following a beta decay, in which case the process is known as beta-delayed proton emission, or can occur from the ground state (or a low-lying isomer) of very proton-rich nuclei, in which case ...
As in β decay, the decay product X′ has greater binding energy and it is closer to the middle of the valley of stability. The α particle carries away two neutrons and two protons, leaving a lighter nuclide. Since heavy nuclides have many more neutrons than protons, α decay increases a nuclide's neutron-proton ratio.
In addition to Standard Model particles, the theory includes 30 colored X bosons, responsible for proton decay, and two W' bosons. The pattern of charges for particles in the SO(10) model, rotated to show the embedding in E6. In particle physics, SO(10) refers to a grand unified theory (GUT) based on the spin group Spin(10).