Search results
Results from the WOW.Com Content Network
The tennis racket theorem or intermediate axis theorem, is a kinetic phenomenon of classical mechanics which describes the movement of a rigid body with three distinct principal moments of inertia. It has also been dubbed the Dzhanibekov effect , after Soviet cosmonaut Vladimir Dzhanibekov , who noticed one of the theorem's logical consequences ...
In 1985 he demonstrated stable and unstable rotation of a T-handle nut from the orbit, subsequently named the Dzhanibekov effect. The effect had been long known from the tennis racket theorem, which says that rotation about an object's intermediate principal axis is unstable while in free fall. In 1985 he was promoted to the rank of major ...
A question has been raised about who gave the earliest statement of the Jarzynski equality. For example, in 1977 the Russian physicists G.N. Bochkov and Yu. E. Kuzovlev (see Bibliography) proposed a generalized version of the fluctuation-dissipation theorem which holds in the presence of arbitrary external time-dependent forces. Despite its ...
Steiner used the power of a point for proofs of several statements on circles, for example: Determination of a circle, that intersects four circles by the same angle. [2] Solving the Problem of Apollonius; Construction of the Malfatti circles: [3] For a given triangle determine three circles, which touch each other and two sides of the triangle ...
Castigliano's method for calculating displacements is an application of his second theorem, which states: If the strain energy of a linearly elastic structure can be expressed as a function of generalised force Q i then the partial derivative of the strain energy with respect to generalised force gives the generalised displacement q i in the direction of Q i.
At point A let any two perpendicular planes a 1, a 2 be taken in the direction of the ray; and let the vibrations of the ray be divided into two parts, one in each of these planes. Take like planes b 1, b 2 in the ray at point B; then the following proposition may be demonstrated.
The exact origins of the LTE lemma are unclear; the result, with its present name and form, has only come into focus within the last 10 to 20 years. [1] However, several key ideas used in its proof were known to Gauss and referenced in his Disquisitiones Arithmeticae. [2]
In mathematics, the Wronskian of n differentiable functions is the determinant formed with the functions and their derivatives up to order n – 1.It was introduced in 1812 by the Polish mathematician Józef WroĊski, and is used in the study of differential equations, where it can sometimes show the linear independence of a set of solutions.