enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mass - Wikipedia

    en.wikipedia.org/wiki/Mass

    If a first body of mass m A is placed at a distance r (center of mass to center of mass) from a second body of mass m B, each body is subject to an attractive force F g = Gm A m B /r 2, where G = 6.67 × 10 −11 N⋅kg −2 ⋅m 2 is the "universal gravitational constant". This is sometimes referred to as gravitational mass.

  3. Mass–energy equivalence - Wikipedia

    en.wikipedia.org/wiki/Mass–energy_equivalence

    Mass–energy equivalence states that all objects having mass, or massive objects, have a corresponding intrinsic energy, even when they are stationary.In the rest frame of an object, where by definition it is motionless and so has no momentum, the mass and energy are equal or they differ only by a constant factor, the speed of light squared (c 2).

  4. Fatigue (material) - Wikipedia

    en.wikipedia.org/wiki/Fatigue_(material)

    The 1969 F-111A crash due to a fatigue failure of the wing pivot fitting from a material defect resulted in the development of the damage-tolerant approach for fatigue design. [ 59 ] The 1977 Dan-Air Boeing 707 crash caused by fatigue failure resulting in the loss of the right horizontal stabilizer.

  5. Effective mass (solid-state physics) - Wikipedia

    en.wikipedia.org/wiki/Effective_mass_(solid...

    The name "density of states effective mass" is used since the above expression for N C is derived via the density of states for a parabolic band. In practice, the effective mass extracted in this way is not quite constant in temperature (N C does not exactly vary as T 3/2). In silicon, for example, this effective mass varies by a few percent ...

  6. Vibration fatigue - Wikipedia

    en.wikipedia.org/wiki/Vibration_fatigue

    Vibration fatigue methods find use wherever the structure experiences loading, that is caused by a random process. These can be the forces that bumps on the road extort on the car chassis, the wind blowing on the wind turbine, waves hitting an offshore construction or a marine vessel. Such loads are first characterized statistically, by ...

  7. Mass versus weight - Wikipedia

    en.wikipedia.org/wiki/Mass_versus_weight

    Nevertheless, one object will always weigh more than another with less mass if both are subject to the same gravity (i.e. the same gravitational field strength). In scientific contexts, mass is the amount of "matter" in an object (though "matter" may be difficult to define), but weight is the force exerted on an object's matter by gravity. [1]

  8. Equivalence principle - Wikipedia

    en.wikipedia.org/wiki/Equivalence_principle

    Careful experiments have shown that the inertial mass on the left side and gravitational mass on the right side are numerically equal and independent of the material composing the masses. The equivalence principle is the hypothesis that this numerical equality of inertial and gravitational mass is a consequence of their fundamental identity.

  9. Conservation of mass - Wikipedia

    en.wikipedia.org/wiki/Conservation_of_mass

    The law implies that mass can neither be created nor destroyed, although it may be rearranged in space, or the entities associated with it may be changed in form. For example, in chemical reactions , the mass of the chemical components before the reaction is equal to the mass of the components after the reaction.