Search results
Results from the WOW.Com Content Network
Boiling point (°C) K b (°C⋅kg/mol) Freezing point (°C) K f (°C⋅kg/mol) Data source; Aniline: 184.3 3.69 –5.96 –5.87 K b & K f [1] Lauric acid: 298.9 44 –3.9 Acetic acid: 1.04 117.9 3.14 16.6 –3.90 K b [1] K f [2] Acetone: 0.78 56.2 1.67 –94.8 K b [3] Benzene: 0.87 80.1 2.65 5.5 –5.12 K b & K f [2] Bromobenzene: 1.49 156.0 6. ...
Acetic acid can never be truly water-free in an atmosphere that contains water, so the presence of 0.1% water in glacial acetic acid lowers its melting point by 0.2 °C. [ 9 ] A common symbol for acetic acid is AcOH (or HOAc), where Ac is the pseudoelement symbol representing the acetyl group CH 3 −C(=O)− ; the conjugate base , acetate ( CH ...
Uses formula: = + for T = 0 to 36 °C = + for T = 36 to 170 °C Formula from Lange's Handbook of Chemistry , 10th ed. log 10 of acetic acid vapor pressure vs. temperature.
Boiling-point elevation is the phenomenon whereby the boiling point of a liquid (a solvent) will be higher when another compound is added, meaning that a solution has a higher boiling point than a pure solvent. This happens whenever a non-volatile solute, such as a salt, is added to a pure solvent, such as water.
This page contains tables of azeotrope data for various binary and ternary mixtures of solvents. The data include the composition of a mixture by weight (in binary azeotropes, when only one fraction is given, it is the fraction of the second component), the boiling point (b.p.) of a component, the boiling point of a mixture, and the specific gravity of the mixture.
In the above equation, T F is the normal freezing point of the pure solvent (273 K for water, for example); a liq is the activity of the solvent in the solution (water activity for aqueous solution); ΔH fus T F is the enthalpy change of fusion of the pure solvent at T F, which is 333.6 J/g for water at 273 K; ΔC fus p is the difference ...
For example, carboxylic acids such as acetic acid (ethanoic acid) or benzoic acid form dimers in benzene, so that the number of solute particles is half the number of acid molecules. When solute particles dissociate in solution, i is greater than 1 (e.g. sodium chloride in water, potassium chloride in water, magnesium chloride in water).
It can be prepared by treating a potassium-containing base such as potassium hydroxide or potassium carbonate with acetic acid: CH 3 COOH + KOH → CH 3 COOK + H 2 O. This sort of reaction is known as an acid-base neutralization reaction. At saturation, the sesquihydrate in water solution (CH 3 COOK·1½H 2 O) begins to form semihydrate at 41.3 ...