Search results
Results from the WOW.Com Content Network
This is a crucial parameter for pump selection and is a popularly used parameter for ascertaining industrial requirements. By eliminating the inlet head, we remove the effect of the supplied pressure to the pump and are left with only the pump’s energy (head) contribution to the fluid flow. Schematic representation of pressure heads in a pump.
An indicator chart records the pressure in the cylinder versus the volume swept by the piston, throughout the two or four strokes of the piston which constitute the engine, or compressor, cycle. The indicator diagram is used to calculate the work done and the power produced in an engine cylinder [2] or used in a compressor cylinder.
For example, if the static compression ratio is 10:1, and the dynamic compression ratio is 7.5:1, a useful value for cylinder pressure would be 7.5 1.3 × atmospheric pressure, or 13.7 bar (relative to atmospheric pressure). The two corrections for dynamic compression ratio affect cylinder pressure in opposite directions, but not in equal strength.
[4] [5] [6] A generalized model of the flow distribution in channel networks of planar fuel cells. [6] Similar to Ohm's law, the pressure drop is assumed to be proportional to the flow rates. The relationship of pressure drop, flow rate and flow resistance is described as Q 2 = ∆P/R. f = 64/Re for laminar flow where Re is the Reynolds number.
Thermodynamic pump testing is a form of pump testing where only the temperature rise, power consumed, and differential pressure need to be measured to find the efficiency of a pump. These measurements are typically made with insertion temperature probes and pressure probes fitted to tapping points on the pump's inlet and outlet. [ 1 ]
With the help of these equations the head developed by a pump and the head utilised by a turbine can be easily determined. As the name suggests these equations were formulated by Leonhard Euler in the eighteenth century. [1] These equations can be derived from the moment of momentum equation when applied for a pump or a turbine.
The first person to build a working four-stroke engine, a stationary engine using a coal gas-air mixture for fuel (a gas engine), was German engineer Nicolaus Otto. [4] This is why the four-stroke principle today is commonly known as the Otto cycle and four-stroke engines using spark plugs often are called Otto engines.
At point B, pressure becomes higher than the aortic pressure and the aortic valve opens, initiating ejection. BC is the ejection phase, volume decreases. At the end of this phase, pressure lowers again and falls below aortic pressure. The aortic valve closes. Point C is the end-systolic point. Segment CD is the isovolumic relaxation. During ...