enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    Euler–Bernoulli beam theory (also known as engineer's beam theory or classical beam theory) [1] is a simplification of the linear theory of elasticity which provides a means of calculating the load-carrying and deflection characteristics of beams.

  3. Bending - Wikipedia

    en.wikipedia.org/wiki/Bending

    The dynamic bending of beams, [12] also known as flexural vibrations of beams, was first investigated by Daniel Bernoulli in the late 18th century. Bernoulli's equation of motion of a vibrating beam tended to overestimate the natural frequencies of beams and was improved marginally by Rayleigh in 1877 by the addition of a mid-plane rotation.

  4. Timoshenko–Ehrenfest beam theory - Wikipedia

    en.wikipedia.org/wiki/Timoshenko–Ehrenfest_beam...

    [4] [5] The model takes into account shear deformation and rotational bending effects, making it suitable for describing the behaviour of thick beams, sandwich composite beams, or beams subject to high-frequency excitation when the wavelength approaches the thickness of the beam.

  5. Beam (structure) - Wikipedia

    en.wikipedia.org/wiki/Beam_(structure)

    If the beam is bent side to side, it functions as an 'H', where it is less efficient. The most efficient shape for both directions in 2D is a box (a square shell); the most efficient shape for bending in any direction, however, is a cylindrical shell or tube. For unidirectional bending, the Ɪ-beam or wide flange beam is superior. [5]

  6. Flexural modulus - Wikipedia

    en.wikipedia.org/wiki/Flexural_modulus

    For a 3-point test of a rectangular beam behaving as an isotropic linear material, where w and h are the width and height of the beam, I is the second moment of area of the beam's cross-section, L is the distance between the two outer supports, and d is the deflection due to the load F applied at the middle of the beam, the flexural modulus: [1]

  7. Flexural rigidity - Wikipedia

    en.wikipedia.org/wiki/Flexural_rigidity

    where is the flexural modulus (in Pa), is the second moment of area (in m 4), is the transverse displacement of the beam at x, and () is the bending moment at x. The flexural rigidity (stiffness) of the beam is therefore related to both E {\displaystyle E} , a material property, and I {\displaystyle I} , the physical geometry of the beam.

  8. Shear and moment diagram - Wikipedia

    en.wikipedia.org/wiki/Shear_and_moment_diagram

    Shear and Bending moment diagram for a simply supported beam with a concentrated load at mid-span. Shear force and bending moment diagrams are analytical tools used in conjunction with structural analysis to help perform structural design by determining the value of shear forces and bending moments at a given point of a structural element such as a beam.

  9. Macaulay's method - Wikipedia

    en.wikipedia.org/wiki/Macaulay's_method

    Simply supported beam with a single eccentric concentrated load. An illustration of the Macaulay method considers a simply supported beam with a single eccentric concentrated load as shown in the adjacent figure. The first step is to find . The reactions at the supports A and C are determined from the balance of forces and moments as