Search results
Results from the WOW.Com Content Network
An antecedent is the first half of a hypothetical proposition, whenever the if-clause precedes the then-clause. In some contexts the antecedent is called the protasis. [1] Examples: If , then . This is a nonlogical formulation of a hypothetical proposition. In this case, the antecedent is P, and the consequent is Q.
Affirming the consequent is the action of taking a true statement and invalidly concluding its converse . The name affirming the consequent derives from using the consequent, Q, of , to conclude the antecedent P.
A consequent is the second half of a hypothetical proposition. In the standard form of such a proposition, it is the part that follows "then". In an implication, if P implies Q, then P is called the antecedent and Q is called the consequent. [1] In some contexts, the consequent is called the apodosis. [2] Examples:
The second premise is an assertion that P, the antecedent of the conditional claim, is the case. From these two premises it can be logically concluded that Q, the consequent of the conditional claim, must be the case as well. An example of an argument that fits the form modus ponens: If today is Tuesday, then John will go to work. Today is Tuesday.
Venn diagram of (true part in red) In logic and mathematics, the logical biconditional, also known as material biconditional or equivalence or biimplication or bientailment, is the logical connective used to conjoin two statements and to form the statement "if and only if" (often abbreviated as "iff " [1]), where is known as the antecedent, and the consequent.
A full conditional thus contains two clauses: the subordinate clause, called the antecedent (or protasis or if-clause), which expresses the condition, and the main clause, called the consequent (or apodosis or then-clause) expressing the result. To form conditional sentences, languages use a variety of grammatical forms and constructions.
That knowledge by which the mind is necessitated to affirm or posit something else, is called the logical reason ground, or antecedent; that something else which the mind is necessitated to affirm or posit, is called the logical consequent; and the relation between the reason and consequent, is called the logical connection or consequence. This ...
In common language, this is equivalent to saying that if the conditional statement is a true statement, then the consequent N must be true—if S is to be true (see third column of "truth table" immediately below). In other words, the antecedent S cannot be true without N being true.