Search results
Results from the WOW.Com Content Network
A Shock Response Spectrum (SRS) [1] is a graphical representation of a shock, or any other transient acceleration input, in terms of how a Single Degree Of Freedom (SDOF) system (like a mass on a spring) would respond to that input. The horizontal axis shows the natural frequency of a hypothetical SDOF, and the vertical axis shows the peak ...
A series of mixed vertical oscillators A plot of the peak acceleration for the mixed vertical oscillators. A response spectrum is a plot of the peak or steady-state response (displacement, velocity or acceleration) of a series of oscillators of varying natural frequency, that are forced into motion by the same base vibration or shock.
Shock is a vector that has units of an acceleration (rate of change of velocity). The unit g (or g ) represents multiples of the standard acceleration of gravity and is conventionally used. A shock pulse can be characterised by its peak acceleration, the duration, and the shape of the shock pulse (half sine, triangular, trapezoidal, etc.).
In this case the gas ahead of the shock is supersonic (in the laboratory frame), and the gas behind the shock system is either supersonic (oblique shocks) or subsonic (a normal shock) (Although for some oblique shocks very close to the deflection angle limit, the downstream Mach number is subsonic.) The shock is the result of the deceleration ...
An oblique shock wave is a shock wave that, unlike a normal shock, is inclined with respect to the direction of incoming air. It occurs when a supersonic flow encounters a corner that effectively turns the flow into itself and compresses. [ 1 ]
Mach reflection can exist in steady, pseudo-steady and unsteady flows. When a shock wave, which is moving with a constant velocity, propagates over a solid wedge, the flow generated by the shock impinges on the wedge thus generating a second reflected shock, which ensures that the velocity of the flow is parallel to the wedge surface.
The velocity structure of the Earth. The red line is the P-wave velocity, the blue line is the S-wave velocity, and the green line density. (Data was adopted from the RockHound Python library.) Seismic velocity structure is the distribution and variation of seismic wave speeds within Earth's and other planetary bodies' subsurface.
The speed of the shock wave relative to the gas is W, making the total velocity equal to u 1 + W. Next, suppose a reference frame is then fixed to the shock so it appears stationary as the gas in regions 1 and 2 move with a velocity relative to it. Redefining region 1 as x and region 2 as y leads to the following shock-relative velocities: