Search results
Results from the WOW.Com Content Network
Butanol (also called butyl alcohol) is a four-carbon alcohol with a formula of C 4 H 9 O H, which occurs in five isomeric structures (four structural isomers), from a straight-chain primary alcohol to a branched-chain tertiary alcohol; [1] all are a butyl or isobutyl group linked to a hydroxyl group (sometimes represented as BuOH, sec-BuOH, i-BuOH, and t-BuOH).
1-Butanol, also known as butan-1-ol or n-butanol, is a primary alcohol with the chemical formula C 4 H 9 OH and a linear structure. Isomers of 1-butanol are isobutanol, butan-2-ol and tert-butanol. The unmodified term butanol usually refers to the straight chain isomer.
The following compounds are liquid at room temperature and are completely miscible with water; ... Name CAS number N 2 H 4: hydrazine: 302-01-2 HNO 3: nitric acid ...
This Wikipedia page provides a comprehensive list of boiling and freezing points for various solvents.
Water is the medium of the oceans, the medium which carries all the substances and elements involved in the marine biogeochemical cycles. Water as found in nature almost always includes dissolved substances, so water has been described as the "universal solvent" for its ability to dissolve so many substances.
Like other butanols, butan-2-ol has low acute toxicity. The LD 50 is 4400 mg/kg (rat, oral). [6]Several explosions have been reported [7] [8] [9] during the conventional distillation of 2-butanol, apparently due to the buildup of peroxides with the boiling point higher than that of pure alcohol (and therefore concentrating in the still pot during distillation).
In naming simple alcohols, the name of the alkane chain loses the terminal e and adds the suffix -ol, e.g., as in "ethanol" from the alkane chain name "ethane". [19] When necessary, the position of the hydroxyl group is indicated by a number between the alkane name and the -ol : propan-1-ol for CH 3 CH 2 CH 2 OH , propan-2-ol for CH 3 CH(OH)CH 3 .
The ocean plays a key role in the water cycle as it is the source of 86% of global evaporation. [2] The water cycle involves the exchange of energy, which leads to temperature changes. When water evaporates, it takes up energy from its surroundings and cools the environment. When it condenses, it releases energy and warms the environment.