Search results
Results from the WOW.Com Content Network
In mathematics, the dot product or scalar product [note 1] is an algebraic operation that takes two equal-length sequences of numbers (usually coordinate vectors), and returns a single number. In Euclidean geometry, the dot product of the Cartesian coordinates of two vectors is widely used.
The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.
The generalization of the dot product formula to Riemannian manifolds is a defining property of a Riemannian connection, which differentiates a vector field to give a vector-valued 1-form. Cross product rule
Vector algebra relations — regarding operations on individual vectors such as dot product, cross product, etc. Vector calculus identities — regarding operations on vector fields such as divergence, gradient, curl, etc.
Frobenius inner product, the dot product of matrices considered as vectors, or, equivalently the sum of the entries of the Hadamard product; Hadamard product of two matrices of the same size, resulting in a matrix of the same size, which is the product entry-by-entry; Kronecker product or tensor product, the generalization to any size of the ...
The cross product (also called the vector product or outer product) is only meaningful in three or seven dimensions. The cross product differs from the dot product primarily in that the result of the cross product of two vectors is a vector. The cross product, denoted a × b, is a vector perpendicular to both a and b and is defined as
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The dot product takes two vectors x and y, and produces a real number x ⋅ y. If x and y are represented in Cartesian coordinates, then the dot product is defined by () = + +. The dot product satisfies the properties [1] It is symmetric in x and y: x ⋅ y = y ⋅ x.