enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    This process of top-down induction of decision trees (TDIDT) [5] is an example of a greedy algorithm, and it is by far the most common strategy for learning decision trees from data. [ 6 ] In data mining , decision trees can be described also as the combination of mathematical and computational techniques to aid the description, categorization ...

  3. Rule induction - Wikipedia

    en.wikipedia.org/wiki/Rule_induction

    Data mining in general and rule induction in detail are trying to create algorithms without human programming but with analyzing existing data structures. [1]: 415- In the easiest case, a rule is expressed with “if-then statements” and was created with the ID3 algorithm for decision tree learning.

  4. ID3 algorithm - Wikipedia

    en.wikipedia.org/wiki/ID3_algorithm

    In decision tree learning, ID3 (Iterative Dichotomiser 3) is an algorithm invented by Ross Quinlan [1] used to generate a decision tree from a dataset. ID3 is the precursor to the C4.5 algorithm , and is typically used in the machine learning and natural language processing domains.

  5. Decision tree - Wikipedia

    en.wikipedia.org/wiki/Decision_tree

    The node splitting function used can have an impact on improving the accuracy of the decision tree. For example, using the information-gain function may yield better results than using the phi function. The phi function is known as a measure of “goodness” of a candidate split at a node in the decision tree.

  6. Decision tree pruning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_pruning

    Pre-pruning procedures prevent a complete induction of the training set by replacing a stop criterion in the induction algorithm (e.g. max. Tree depth or information gain (Attr)> minGain). Pre-pruning methods are considered to be more efficient because they do not induce an entire set, but rather trees remain small from the start.

  7. Gene expression programming - Wikipedia

    en.wikipedia.org/wiki/Gene_expression_programming

    Most decision tree induction algorithms involve selecting an attribute for the root node and then make the same kind of informed decision about all the nodes in a tree. Decision trees can also be created by gene expression programming, [11] with the advantage that all the decisions concerning the growth of the tree are made by the algorithm ...

  8. Inductive logic programming - Wikipedia

    en.wikipedia.org/wiki/Inductive_logic_programming

    Inductive logic programming has adopted several different learning settings, the most common of which are learning from entailment and learning from interpretations. [16] In both cases, the input is provided in the form of background knowledge B, a logical theory (commonly in the form of clauses used in logic programming), as well as positive and negative examples, denoted + and respectively.

  9. Inductive bias - Wikipedia

    en.wikipedia.org/wiki/Inductive_bias

    An inductive bias allows a learning algorithm to prioritize one solution (or interpretation) over another, independently of the observed data. [3] In machine learning, the aim is to construct algorithms that are able to learn to predict a certain target output. To achieve this, the learning algorithm is presented some training examples that ...