Search results
Results from the WOW.Com Content Network
In a semigroup, a left-invertible element is left-cancellative, and analogously for right and two-sided. If a −1 is the left inverse of a, then a ∗ b = a ∗ c implies a −1 ∗ (a ∗ b) = a −1 ∗ (a ∗ c), which implies b = c by associativity. For example, every quasigroup, and thus every group, is cancellative.
In mathematics, the concept of an inverse element generalises the concepts of opposite (−x) and reciprocal (1/x) of numbers.. Given an operation denoted here ∗, and an identity element denoted e, if x ∗ y = e, one says that x is a left inverse of y, and that y is a right inverse of x.
A loop has the weak inverse property when (xy)z = e if and only if x(yz) = e. This may be stated in terms of inverses via (xy) λ x = y λ or equivalently x(yx) ρ = y ρ. A loop has the inverse property if it has both the left and right inverse properties. Inverse property loops also have the antiautomorphic and weak inverse properties.
A right inverse in mathematics may refer to: A right inverse element with respect to a binary operation on a set; A right inverse function for a mapping between sets;
If x is invertible, say with inverse y, then one can define negative powers of x by setting x −n = y n for each n ≥ 1; this makes the equation x m+n = x m • x n hold for all m, n ∈ Z. The set of all invertible elements in a monoid, together with the operation •, forms a group .
A magma is a set M matched with an operation • that sends any two elements a, b ∈ M to another element, a • b ∈ M. The symbol • is a general placeholder for a properly defined operation. To qualify as a magma, the set and operation (M, •) must satisfy the following requirement (known as the magma or closure property):
The manipulations of the Rubik's Cube form the Rubik's Cube group.. In mathematics, a group is a set with an operation that associates an element of the set to every pair of elements of the set (as does every binary operation) and satisfies the following constraints: the operation is associative, it has an identity element, and every element of the set has an inverse element.
The notions of right or left quasiregularity correspond to the situations where 1 − r has a right or left inverse, respectively. [1] An element x of a non-unital ring R is said to be right quasiregular if there exists y in R such that + =. [2] The notion of a left quasiregular element is defined in an analogous manner.