Search results
Results from the WOW.Com Content Network
Most 2-bromoalkanes are prepared by addition of hydrogen bromide to the 1-alkene. Markovnikov addition proceeds in the absence of free-radicals, i.e. give the 2-bromo derivatives. [ 2 ]
However, the compiler automatically transforms the code so that the list will "silently" receive objects, while the source code only mentions primitive values. For example, the programmer can now write list. add (3) and think as if the int 3 were added to the list; but, the compiler will have actually transformed the line into list. add (new ...
Hermes Project: C++/Python library for rapid prototyping of space- and space-time adaptive hp-FEM solvers. IML++ is a C++ library for solving linear systems of equations, capable of dealing with dense, sparse, and distributed matrices. IT++ is a C++ library for linear algebra (matrices and vectors), signal processing and communications ...
Free-radical substitution with bromine is commonly used to prepare organobromine compounds. Carbonyl-containing, benzylic, allylic substrates are especially prone to this reactions. For example, the commercially significant bromoacetic acid is generated directly from acetic acid and bromine in the presence of phosphorus tribromide catalyst:
An enal (or alkenal) is an organic compound containing both alkene and aldehyde functional groups. In an α,β-unsaturated enal, the alkene is conjugated to the carbonyl group of the aldehyde (formyl group). [3] The simplest enal is acrolein (CH 2 =CHCHO). Other examples include cis-3-hexenal (essence of mowed lawns) and cinnamaldehyde (essence ...
For example, in the three-component coupling of aldehydes, amines, and activated alkenes, the aldehyde reacts with the amine to produce an imine prior to forming the aza-MBH adduct, as in the reaction of aryl aldehydes, diphenylphosphinamide, and methyl vinyl ketone, in the presence of TiCl 4, triphenylphosphine, and triethylamine: [19]
In organic chemistry, enone–alkene cycloadditions are a version of the [2+2] cycloaddition. This reaction involves an enone and alkene as substrates. Although the concerted photochemical [2+2] cycloaddition is allowed, the reaction between enones and alkenes is stepwise and involves discrete diradical intermediates.
The main limitation of the traditional Wittig reaction is that the reaction proceeds mainly via the erythro betaine intermediate, which leads to the Z-alkene. The erythro betaine can be converted to the threo betaine using phenyllithium at low temperature. [18] This modification affords the E-alkene. The Schlosser variant of the Wittig reaction