enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Continuum mechanics - Wikipedia

    en.wikipedia.org/wiki/Continuum_mechanics

    Continuum mechanics is a branch of mechanics that deals with the deformation of and transmission of forces through materials modeled as a continuous medium (also called a continuum) rather than as discrete particles. Continuum mechanics deals with deformable bodies, as opposed to rigid bodies. A continuum model assumes that the substance of the ...

  3. Fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Fluid_mechanics

    Fluid mechanics is the branch of physics concerned with the mechanics of fluids (liquids, gases, and plasmas) and the forces on them. [ 1 ] : 3 It has applications in a wide range of disciplines, including mechanical , aerospace , civil , chemical , and biomedical engineering , as well as geophysics , oceanography , meteorology , astrophysics ...

  4. Knudsen number - Wikipedia

    en.wikipedia.org/wiki/Knudsen_number

    The Knudsen number helps determine whether statistical mechanics or the continuum mechanics formulation of fluid dynamics should be used to model a situation. If the Knudsen number is near or greater than one, the mean free path of a molecule is comparable to a length scale of the problem, and the continuum assumption of fluid mechanics is no ...

  5. Category:Continuum mechanics - Wikipedia

    en.wikipedia.org/wiki/Category:Continuum_mechanics

    Continuum mechanics is a branch of classical mechanics that deals with solids and fluids ... (fluid mechanics) ... Generalized Lagrangian mean; Gent hyperelastic model;

  6. Strain-rate tensor - Wikipedia

    en.wikipedia.org/wiki/Strain-rate_tensor

    A two-dimensional flow that, at the highlighted point, has only a strain rate component, with no mean velocity or rotational component. In continuum mechanics, the strain-rate tensor or rate-of-strain tensor is a physical quantity that describes the rate of change of the strain (i.e., the relative deformation) of a material in the neighborhood of a certain point, at a certain moment of time.

  7. Dimensionless numbers in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_numbers_in...

    Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.

  8. Flow velocity - Wikipedia

    en.wikipedia.org/wiki/Flow_velocity

    In continuum mechanics the flow velocity in fluid dynamics, also macroscopic velocity [1] [2] in statistical mechanics, or drift velocity in electromagnetism, is a vector field used to mathematically describe the motion of a continuum. The length of the flow velocity vector is scalar, the flow speed.

  9. Timeline of fluid and continuum mechanics - Wikipedia

    en.wikipedia.org/wiki/Timeline_of_fluid_and...

    1643 – Evangelista Torricelli provides a relation between the speed of fluid flowing from an orifice to the height of fluid above the opening, given by Torricelli's law. He also builds a mercury barometer and does a series of experiments on vacuum. [1] 1650 – Otto von Guericke invents the first vacuum pump. [1]