Search results
Results from the WOW.Com Content Network
Brainwave entrainment, also referred to as brainwave synchronization or neural entrainment, refers to the observation that brainwaves (large-scale electrical oscillations in the brain) will naturally synchronize to the rhythm of periodic external stimuli, such as flickering lights, [1] speech, [2] music, [3] or tactile stimuli.
Prepulse inhibition (PPI) is a neurological phenomenon in which a weaker prestimulus (prepulse) inhibits the reaction of an organism to a subsequent strong reflex-eliciting stimulus (pulse), often using the startle reflex. The stimuli are usually acoustic, but tactile stimuli (e.g. via air puffs onto the skin) [1] and light stimuli [2] are also ...
The mechanoreception of sound requires a specific set of receptor cells called hair cells that allow for gradient signals to pass onto spatial ganglia where the signal will be sent to the brain to be processed. Since this is mechanoreception, different from chemoreception, adaptation of sound from surroundings highly depends on the physical ...
The study suggests that every hour of exercise per week results in an 11% reduction in risk. Some prior studies have indicated that extreme amounts of exercise may be a risk factor in developing AFib.
The first portion of an ICSS experiment involves training subjects to respond for stimulation using a fixed-ratio 1 (FR-1) reinforcement schedule (1 response = 1 reward). In experiments involving rats, subjects are trained to press a lever for stimulation, and the rate of lever-pressing is typically the dependent variable . [ 1 ]
Neuroplasticity is the process by which neurons adapt to a disturbance over time, and most often occurs in response to repeated exposure to stimuli. [27] Aerobic exercise increases the production of neurotrophic factors [note 1] (e.g., BDNF, IGF-1, VEGF) which mediate improvements in cognitive functions and various forms of memory by promoting blood vessel formation in the brain, adult ...
(b) A functional electrical stimulation system injects electrical current into the cell. (c) The intact but dormant axon receives the stimulus and propagates an action potential to (d) the neuromuscular junction. (e) The corresponding muscle fibers contract and generate (f) muscle force. (g) A train of negative pulses is produced.
The minimal effective (i.e., threshold) stimulus is adequate only for fibres of high excitability, but a stronger stimulus excites all the nerve fibres. Increasing the stimulus further does increase the response of whole nerve. Heart muscle is excitable, i.e., it responds to external stimuli by contracting. If the external stimulus is too weak ...