enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. AVL tree - Wikipedia

    en.wikipedia.org/wiki/AVL_tree

    With the new operations, the implementation of AVL trees can be more efficient and highly-parallelizable. [13] The function Join on two AVL trees t 1 and t 2 and a key k will return a tree containing all elements in t 1, t 2 as well as k. It requires k to be greater than all keys in t 1 and smaller than all keys in t 2.

  3. WAVL tree - Wikipedia

    en.wikipedia.org/wiki/WAVL_tree

    The weak AVL tree is defined by the weak AVL rule: Weak AVL rule: all rank differences are 1 or 2, and all leaf nodes have rank 0. Note that weak AVL tree generalizes the AVL tree by allowing for 2,2 type node. A simple proof shows that a weak AVL tree can be colored in a way that represents a red-black tree.

  4. 2–3–4 tree - Wikipedia

    en.wikipedia.org/wiki/2–3–4_tree

    If a large proportion of the elements of the tree are deleted, then the tree will become much larger than the current size of the stored elements, and the performance of other operations will be adversely affected by the deleted elements. When this is undesirable, the following algorithm can be followed to remove a value from the 2–3–4 tree:

  5. PAM library - Wikipedia

    en.wikipedia.org/wiki/PAM_library

    PAM supports four balancing schemes, including AVL trees, red-black trees, treaps and weight-balanced trees. PAM is a parallel library and is also safe for concurrency. Its parallelism can be supported by cilk, OpenMP or the scheduler in PBBS. [2] Theoretically, all algorithms in PAM are work-efficient and have polylogarithmic depth.

  6. Join-based tree algorithms - Wikipedia

    en.wikipedia.org/wiki/Join-based_tree_algorithms

    Under this framework, the join operation captures all balancing criteria of different balancing schemes, and all other functions join have generic implementation across different balancing schemes. The join-based algorithms can be applied to at least four balancing schemes: AVL trees, red–black trees, weight-balanced trees and treaps.

  7. Red–black tree - Wikipedia

    en.wikipedia.org/wiki/Red–black_tree

    The worst-case height of AVL is 0.720 times the worst-case height of red-black trees, so AVL trees are more rigidly balanced. The performance measurements of Ben Pfaff with realistic test cases in 79 runs find AVL to RB ratios between 0.677 and 1.077, median at 0.947, and geometric mean 0.910. [22] The performance of WAVL trees lie in between ...

  8. Interval tree - Wikipedia

    en.wikipedia.org/wiki/Interval_tree

    Both insertion and deletion require (⁡) time, with being the total number of intervals in the tree prior to the insertion or deletion operation. An augmented tree can be built from a simple ordered tree, for example a binary search tree or self-balancing binary search tree , ordered by the 'low' values of the intervals.

  9. Scapegoat tree - Wikipedia

    en.wikipedia.org/wiki/Scapegoat_tree

    Scapegoat trees are unusual in that deletion is easier than insertion. To enable deletion, scapegoat trees need to store an additional value with the tree data structure. This property, which we will call MaxNodeCount simply represents the highest achieved NodeCount.