Search results
Results from the WOW.Com Content Network
Fig. 1: AVL tree with balance factors (green) In computer science, an AVL tree (named after inventors Adelson-Velsky and Landis) is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property.
To turn a regular search tree into an order statistic tree, the nodes of the tree need to store one additional value, which is the size of the subtree rooted at that node (i.e., the number of nodes below it). All operations that modify the tree must adjust this information to preserve the invariant that size[x] = size[left[x]] + size[right[x]] + 1
Binary tree sort, in particular, is likely to be slower than merge sort, quicksort, or heapsort, because of the tree-balancing overhead as well as cache access patterns.) Self-balancing BSTs are flexible data structures, in that it's easy to extend them to efficiently record additional information or perform new operations.
In computer science, tree traversal (also known as tree search and walking the tree) is a form of graph traversal and refers to the process of visiting (e.g. retrieving, updating, or deleting) each node in a tree data structure, exactly once. Such traversals are classified by the order in which the nodes are visited.
If a large proportion of the elements of the tree are deleted, then the tree will become much larger than the current size of the stored elements, and the performance of other operations will be adversely affected by the deleted elements. When this is undesirable, the following algorithm can be followed to remove a value from the 2–3–4 tree:
The weak AVL tree is defined by the weak AVL rule: Weak AVL rule: all rank differences are 1 or 2, and all leaf nodes have rank 0. Note that weak AVL tree generalizes the AVL tree by allowing for 2,2 type node. A simple proof shows that a weak AVL tree can be colored in a way that represents a red-black tree.
Both insertion and deletion require () time, with being the total number of intervals in the tree prior to the insertion or deletion operation. An augmented tree can be built from a simple ordered tree, for example a binary search tree or self-balancing binary search tree, ordered by the 'low' values of the intervals. An extra annotation is ...
A faster method (due to Floyd [8]) starts by arbitrarily putting the elements on a binary tree, respecting the shape property (the tree could be represented by an array, see below). Then starting from the lowest level and moving upwards, sift the root of each subtree downward as in the deletion algorithm until the heap property is restored.