Search results
Results from the WOW.Com Content Network
The term "orthogonal line" often has a quite different meaning in the literature of modern art criticism. Many works by painters such as Piet Mondrian and Burgoyne Diller are noted for their exclusive use of "orthogonal lines" — not, however, with reference to perspective, but rather referring to lines that are straight and exclusively ...
a) Orthogonal curvilinear coordinate. In orthogonal mesh the grid lines are perpendicular to intersection. This is shown in Figure 2. b) Non–orthogonal coordinate. Figure 3 shows non-orthogonal grids. The figure shows the grid lines do not intersect at 90-degree angle.
The grid format also features prominently in minimalist and conceptual art of the 60's and 70's. The art theorist Rosalind Krauss writes, "In the temporal dimension, the grid is an emblem of modernity by being just that: the form that is ubiquitous in the art of our century, while appearing nowhere, nowhere at all, in the art of the last one.
Orthographic projection (also orthogonal projection and analemma) [a] is a means of representing three-dimensional objects in two dimensions.Orthographic projection is a form of parallel projection in which all the projection lines are orthogonal to the projection plane, [2] resulting in every plane of the scene appearing in affine transformation on the viewing surface.
However, outside of German literature, the term "axonometric" is sometimes used only to distinguish between orthographic views where the principal axes of an object are not orthogonal to the projection plane, and orthographic views in which the principal axes of the object are orthogonal to the projection plane.
The term "axonometry" means "to measure along axes", and indicates that the dimensions and scaling of the coordinate axes play a crucial role. The result of an axonometric procedure is a uniformly-scaled parallel projection of the object.
Rectilinear polygons are also known as orthogonal polygons. Other terms in use are iso-oriented, axis-aligned, and axis-oriented polygons. These adjectives are less confusing when the polygons of this type are rectangles, and the term axis-aligned rectangle is preferred, although orthogonal rectangle and rectilinear rectangle are in use as well.
A conformal map acting on a rectangular grid. Note that the orthogonality of the curved grid is retained. While vector operations and physical laws are normally easiest to derive in Cartesian coordinates, non-Cartesian orthogonal coordinates are often used instead for the solution of various problems, especially boundary value problems, such as those arising in field theories of quantum ...