Search results
Results from the WOW.Com Content Network
A straight line can intersect a circle at zero, one, or two points. A line with intersections at two points is called a secant line, at one point a tangent line and at no points an exterior line. A chord is the line segment that joins two distinct points of a circle. A chord is therefore contained in a unique secant line and each secant line ...
No tangent line can be drawn through a point within a circle, since any such line must be a secant line. However, two tangent lines can be drawn to a circle from a point P outside of the circle. The geometrical figure of a circle and both tangent lines likewise has a reflection symmetry about the radial axis joining P to the center point O of ...
The secants ′ ¯, ′ ¯ meet on the radical axis of the given two circles. Moving the lower secant (see diagram) towards the upper one, the red circle becomes a circle, that is tangent to both given circles. The center of the tangent circle is the intercept of the lines ¯, ¯. The secants ′ ¯, ′ ¯ become tangents at the points ,.
Common lines and line segments on a circle, including a chord in blue. A chord (from the Latin chorda, meaning "bowstring") of a circle is a straight line segment whose endpoints both lie on a circular arc. If a chord were to be extended infinitely on both directions into a line, the object is a secant line.
Tangent lines to circles; Circle packing theorem, the result that every planar graph may be realized by a system of tangent circles; Hexafoil, the shape formed by a ring of six tangent circles; Feuerbach's theorem on the tangency of the nine-point circle of a triangle with its incircle and excircles; Descartes' theorem; Ford circle; Bankoff circle
This leads to the definition of the slope of the tangent line to the graph as the limit of the difference quotients for the function f. This limit is the derivative of the function f at x = a, denoted f ′(a). Using derivatives, the equation of the tangent line can be stated as follows: = + ′ ().
Next to the intersecting chords theorem and the tangent-secant theorem, the intersecting secants theorem represents one of the three basic cases of a more general theorem about two intersecting lines and a circle - the power of point theorem.
A bitangent differs from a secant line in that a secant line may cross the curve at the two points it intersects it. One can also consider bitangents that are not lines; for instance, the symmetry set of a curve is the locus of centers of circles that are tangent to the curve in two points.