enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multinomial logistic regression - Wikipedia

    en.wikipedia.org/wiki/Multinomial_logistic...

    Multinomial logistic regression is known by a variety of other names, including polytomous LR, [2] [3] multiclass LR, softmax regression, multinomial logit (mlogit), the maximum entropy (MaxEnt) classifier, and the conditional maximum entropy model. [4]

  3. Discrete choice - Wikipedia

    en.wikipedia.org/wiki/Discrete_choice

    C-logit Model [19] - Captures correlations between alternatives using 'commonality factor' Paired Combinatorial Logit Model [20] - Suitable for route choice problems. Generalized Extreme Value Model [21] - General class of model, derived from the random utility model [17] to which multinomial logit and nested logit belong

  4. Iteratively reweighted least squares - Wikipedia

    en.wikipedia.org/wiki/Iteratively_reweighted...

    IRLS is used to find the maximum likelihood estimates of a generalized linear model, and in robust regression to find an M-estimator, as a way of mitigating the influence of outliers in an otherwise normally-distributed data set, for example, by minimizing the least absolute errors rather than the least square errors.

  5. Gumbel distribution - Wikipedia

    en.wikipedia.org/wiki/Gumbel_distribution

    In the latent variable formulation of the multinomial logit model — common in discrete choice theory — the errors of the latent variables follow a Gumbel distribution. This is useful because the difference of two Gumbel-distributed random variables has a logistic distribution .

  6. Choice modelling - Wikipedia

    en.wikipedia.org/wiki/Choice_modelling

    These often begin with the conditional logit model - traditionally, although slightly misleadingly, referred to as the multinomial logistic (MNL) regression model by choice modellers. The MNL model converts the observed choice frequencies (being estimated probabilities, on a ratio scale) into utility estimates (on an interval scale) via the ...

  7. Vector generalized linear model - Wikipedia

    en.wikipedia.org/.../Vector_generalized_linear_model

    For example, if each linear predictor is for a different time point then one might have a time-varying covariate. For example, in discrete choice models, one has conditional logit models, nested logit models, generalized logit models, and the like, to distinguish between certain variants and fit a multinomial logit model to, e.g., transport ...

  8. Logistic distribution - Wikipedia

    en.wikipedia.org/wiki/Logistic_distribution

    The probability density function is the partial derivative of the cumulative distribution function: (;,) = (;,) = / (+ /) = (() / + / ()) = ⁡ ().When the location parameter μ is 0 and the scale parameter s is 1, then the probability density function of the logistic distribution is given by

  9. Mixed logit - Wikipedia

    en.wikipedia.org/wiki/Mixed_logit

    Mixed logit is a fully general statistical model for examining discrete choices. It overcomes three important limitations of the standard logit model by allowing for random taste variation across choosers, unrestricted substitution patterns across choices, and correlation in unobserved factors over time. [ 1 ]