Search results
Results from the WOW.Com Content Network
Cathodic arc deposition or Arc-PVD is a physical vapor deposition technique in which an electric arc is used to vaporize material from a cathode target. The vaporized material then condenses on a substrate, forming a thin film. The technique can be used to deposit metallic, ceramic, and composite films.
High zinc improves the bath's efficiency (plating speed), while lower levels improve the bath's ability to throw into low current densities. Typically, the Zn metal level varies between 20 and 50 g/L (2.7-6.7 oz/gal). The pH varies between 4.8 and 5.8 units. The following chart illustrates a typical all potassium chloride bath composition:
Electrophoretic deposition (EPD), is a term for a broad range of industrial processes which includes electrocoating, cathodic electrodeposition, anodic electrodeposition, and electrophoretic coating, or electrophoretic painting.
Electroplating, also known as electrochemical deposition or electrodeposition, is a process for producing a metal coating on a solid substrate through the reduction of cations of that metal by means of a direct electric current.
Physical vapor deposition (PVD), sometimes called physical vapor transport (PVT), describes a variety of vacuum deposition methods which can be used to produce thin films and coatings on substrates including metals, ceramics, glass, and polymers. PVD is characterized by a process in which the material transitions from a condensed phase to a ...
Cathodic stripping voltammetry is a voltammetric method for quantitative determination of specific ionic species. [6] It is similar to the trace analysis method anodic stripping voltammetry , except that for the plating step, the potential is held at an oxidizing potential, and the oxidized species are stripped from the electrode by sweeping ...
The PVD process can be carried out at lower deposition temperatures and without corrosive products, but deposition rates are typically lower. Electron-beam physical vapor deposition, however, yields a high deposition rate from 0.1 to 100 μm/min at relatively low substrate temperatures, with very high material utilization efficiency. The ...
Thermal spraying can provide thick coatings (approx. thickness range is 20 microns to several mm, depending on the process and feedstock), over a large area at high deposition rate as compared to other coating processes such as electroplating, physical and chemical vapor deposition. Coating materials available for thermal spraying include ...