Search results
Results from the WOW.Com Content Network
The integral heat of dissolution is defined as a process of obtaining a certain amount of solution with a final concentration. The enthalpy change in this process, normalized by the mole number of solute, is evaluated as the molar integral heat of dissolution. Mathematically, the molar integral heat of dissolution is denoted as:
An endothermic process may be a chemical process, such as dissolving ammonium nitrate (NH 4 NO 3) in water (H 2 O), or a physical process, such as the melting of ice cubes. [5] The opposite of an endothermic process is an exothermic process, one that releases or "gives out" energy, usually in the form of heat and sometimes as electrical energy. [1]
In thermochemistry, a thermochemical equation is a balanced chemical equation that represents the energy changes from a system to its surroundings. One such equation involves the enthalpy change, which is denoted with Δ H {\displaystyle \Delta H} In variable form, a thermochemical equation would appear similar to the following:
The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".
In a dissolution process, a solute is changed from a pure phase—solid, liquid, or gas—to a solution phase. If the pure phase of the solute is a solid or gas (presuming the solvent itself is liquid), the process can be seen in two stages: the phase change into a liquid, and the mixing of liquids. The dissolution process is generally ...
The intrinsic dissolution rate is defined by the United States Pharmacopeia. Dissolution rates vary by orders of magnitude between different systems. Typically, very low dissolution rates parallel low solubilities, and substances with high solubilities exhibit high dissolution rates, as suggested by the Noyes-Whitney equation.
The reaction is usually endothermic as heat is required to break chemical bonds in the compound undergoing decomposition. If decomposition is sufficiently exothermic, a positive feedback loop is created producing thermal runaway and possibly an explosion or other chemical reaction. Thermal decomposition is a chemical reaction where heat is a ...
This can occur by increasing the entropy of the system, often through the formation of gaseous or dissolved reaction products, which have higher entropy. Since the entropy term in the free-energy change increases with temperature, many endothermic reactions preferably take place at high temperatures.