Search results
Results from the WOW.Com Content Network
In implantable bio-MEMS for drug delivery, it is important to consider device rupture and dose dumping, fibrous encapsulation of the device, and device explantation. [ 73 ] [ 75 ] Most drugs also need to be delivered in relatively large quantities (milliliters or even greater), which makes implantable bio-MEMS drug delivery challenging due to ...
As mentioned before, microneedles have also been explored for local targeted drug delivery at other drug delivery sites, such as the gastrointestinal, ocular, vascular etc., of which, ocular, vaginal and gastrointestinal have shown increasingnly convincing outcomes where they serve as a more efficient, localised drug delivery system, without ...
Nanoparticle drug delivery systems are engineered technologies that use nanoparticles for the targeted delivery and controlled release of therapeutic agents. The modern form of a drug delivery system should minimize side-effects and reduce both dosage and dosage frequency. Recently, nanoparticles have aroused attention due to their potential ...
Drug delivery devices are specialized tools for the delivery of a drug or therapeutic agent via a specific route of administration. Such devices are used as part of one or more medical treatments . Contents
Bioprinting drug delivery is a method for producing drug delivery vehicles. It uses 3D printing of biomaterials.Such vehicles are biocompatible, tissue-specific hydrogels or implantable devices. 3D bioprinting prints cells and biological molecules to form tissues, organs, or biological materials in a scaffold-free manner that mimics living human tissue.
Ultrasound-triggered drug delivery using stimuli-responsive hydrogels refers to the process of using ultrasound energy for inducing drug release from hydrogels that are sensitive to acoustic stimuli. This method of approach is one of many stimuli-responsive drug delivery-based systems that has gained traction in recent years due to its ...
Nanocarriers are useful in the drug delivery process because they can deliver drugs to site-specific targets, allowing drugs to be delivered in certain organs or cells but not in others. Site-specificity is a major therapeutic benefit as it prevents drugs from being delivered to the wrong places.
Microspheres composed of dextran have several advantages as a drug delivery system including controlled drug release, localized drug concentration, and reduced adverse reactions. Controlled drug release by these dextran microparticles is achieved by degradation, which is the breakdown of chemical bonds in the molecular structure of the ...