Search results
Results from the WOW.Com Content Network
More formulas of this nature can be given, as explained by Ramanujan's theory of elliptic functions to alternative bases. Perhaps the most notable hypergeometric inversions are the following two examples, involving the Ramanujan tau function τ {\displaystyle \tau } and the Fourier coefficients j {\displaystyle \mathrm {j} } of the J-invariant ...
A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at
This geometric argument relies on definitions of arc length and area, which act as assumptions, so it is rather a condition imposed in construction of trigonometric functions than a provable property. [2] For the sine function, we can handle other values. If θ > π /2, then θ > 1. But sin θ ≤ 1 (because of the Pythagorean identity), so sin ...
The digits of pi extend into infinity, and pi is itself an irrational number, meaning it can’t be truly represented by an integer fraction (the one we often learn in school, 22/7, is not very ...
A simple recurrence formula to generate trigonometric tables is based on Euler's formula and the relation: (+) = This leads to the following recurrence to compute trigonometric values s n and c n as above: c 0 = 1 s 0 = 0 c n+1 = w r c n − w i s n s n+1 = w i c n + w r s n
Repeated application of the half-angle formulas leads to nested radicals, specifically nested square roots of 2 of the form . In general, the sine and cosine of most angles of the form β / 2 n {\displaystyle \beta /2^{n}} can be expressed using nested square roots of 2 in terms of β {\displaystyle \beta } .
The basic quantities describing a sphere (meaning a 2-sphere, a 2-dimensional surface inside 3-dimensional space) will be denoted by the following variables r {\displaystyle r} is the radius, C = 2 π r {\displaystyle C=2\pi r} is the circumference (the length of any one of its great circles ),
By the periodicity identities we can say if the formula is true for −π < θ ≤ π then it is true for all real θ. Next we prove the identity in the range π / 2 < θ ≤ π. To do this we let t = θ − π / 2 , t will now be in the range 0 < t ≤ π/2. We can then make use of squared versions of some basic shift identities ...