Search results
Results from the WOW.Com Content Network
As neuroscience has progressed, the role of the cytoskeleton and microtubules has assumed greater importance. In addition to providing structural support, microtubule functions include axoplasmic transport and control of the cell's movement, growth and shape. [31]
Cross section diagram through the cilium, showing the “9 + 2” arrangement of microtubules the axoneme of cilia and flagella. the mitotic spindle. synthesis of the cell wall in plants. In addition to the roles described above, Stuart Hameroff and Roger Penrose have proposed that microtubules function in consciousness. [32]
Microtubule and tubulin metrics [1]. Microtubules are polymers of tubulin that form part of the cytoskeleton and provide structure and shape to eukaryotic cells. Microtubules can be as long as 50 micrometres, as wide as 23 to 27 nm [2] and have an inner diameter between 11 and 15 nm. [3]
The building-block of the axoneme is the microtubule; each axoneme is composed of several microtubules aligned in a characteristic pattern known as the 9+2 axoneme as shown in the image at right. Nine sets of doublet microtubules (a specialized structure consisting of two linked microtubules) form a ring around a central pair of single ...
Tau proteins stabilize microtubules, and thus shift the reaction kinetics in favor of addition of new subunits, accelerating microtubule growth. Tau has the additional function of facilitating bundling of microtubules within the nerve cell. The function of tau has been linked to the neurological condition Alzheimer's disease.
The interaction between microtubules and the plasma membrane provide support, shape, and stability to the cell, as well as act as tracks for transporting materials within the cell. Overall, microtubular membranes are vital components of cellular organization and function.
In neuronal axons, the actin or spectric cytoskeleton forms an array of periodic rings [10] and in the sperm flagellum it forms a helical structure. [11] In plant cells, the cell cortex is reinforced by cortical microtubules underlying the plasma membrane. The direction of these cortical microtubules determines which way the cell elongates when ...
The microtubule-organizing center (MTOC) is a structure found in eukaryotic cells from which microtubules emerge. MTOCs have two main functions: the organization of eukaryotic flagella and cilia and the organization of the mitotic and meiotic spindle apparatus, which separate the chromosomes during cell division.