Search results
Results from the WOW.Com Content Network
Mathematical psychology is an approach to psychological research that is based on mathematical modeling of perceptual, thought, cognitive and motor processes, and on the establishment of law-like rules that relate quantifiable stimulus characteristics with quantifiable behavior (in practice often constituted by task performance).
In analytic geometry, an asymptote (/ ˈ æ s ɪ m p t oʊ t /) of a curve is a line such that the distance between the curve and the line approaches zero as one or both of the x or y coordinates tends to infinity. In projective geometry and related contexts, an asymptote of a curve is a line which is tangent to the curve at a point at infinity ...
Algebra was practiced and diffused orally by practitioners, with Diophantus picking up techniques to solve problems in arithmetic. [37] In modern algebra a polynomial is a linear combination of variable x that is built of exponentiation, scalar multiplication, addition, and subtraction.
The history of mathematics deals with the origin of discoveries in mathematics and the mathematical methods and notation of the past. Before the modern age and the worldwide spread of knowledge, written examples of new mathematical developments have come to light only in a few locales.
The term algebra is derived from the Arabic word al-jabr meaning 'the reunion of broken parts' that he used for naming one of these methods in the title of his main treatise. [31] [32] Algebra became an area in its own right only with François Viète (1540–1603), who introduced the use of variables for representing unknown or unspecified ...
Psychology is the scientific study of mind and behavior. [1] [2] Its subject matter includes the behavior of humans and nonhumans, both conscious and unconscious phenomena, and mental processes such as thoughts, feelings, and motives. Psychology is an academic discipline of immense scope, crossing the boundaries between the natural and social ...
Algebra is the branch of mathematics that studies certain abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic operations other than the standard arithmetic operations, such as addition and multiplication.
Firstly both definitions suppose that rational numbers and thus natural numbers are rigorously defined; this was done a few years later with Peano axioms. Secondly, both definitions involve infinite sets (Dedekind cuts and sets of the elements of a Cauchy sequence), and Cantor's set theory was published several years later.