Search results
Results from the WOW.Com Content Network
The two main factors that impact drag are the frontal area of the vehicle and the drag coefficient. The drag coefficient is a unit-less value that denotes how much an object resists movement through a fluid such as water or air. A potential complication of altering a vehicle's aerodynamics is that it may cause the vehicle to get too much lift.
Braking distance refers to the distance a vehicle will travel from the point when its brakes are fully applied to when it comes to a complete stop. It is primarily affected by the original speed of the vehicle and the coefficient of friction between the tires and the road surface, [Note 1] and negligibly by the tires' rolling resistance and vehicle's air drag.
Drag coefficients in fluids with Reynolds number approximately 10 4 [1] [2] Shapes are depicted with the same projected frontal area. In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water.
Speed – flow diagrams are used to determine the speed at which the optimum flow occurs. There are currently two shapes of the speed-flow curve. The speed-flow curve also consists of two branches, the free flow and congested branches. The diagram is not a function, allowing the flow variable to exist at two different speeds.
Aerodynamic Drag and its effect on the acceleration and top speed of a vehicle. Vehicle Aerodynamic Drag calculator based on drag coefficient, frontal area and speed. Smithsonian National Air and Space Museum's How Things Fly website; Effect of dimples on a golf ball and a car
Every vehicle moves in lockstep with the vehicle in front of it, with frequent slowing required. Travel time cannot be predicted, with generally more demand than capacity. A road in a constant traffic jam is at this LOS, because LOS is an average or typical service rather than a constant state. For example, a highway might be at LOS D for the ...
Passenger car equivalent (PCE) or passenger car unit (PCU) is a metric used in transportation engineering to assess traffic-flow rate on a highway. [ 1 ] A passenger car equivalent is essentially the impact that a mode of transport has on traffic variables (such as headway, speed, density) compared to a single car.
Figure 1 Hard wheel rolling on and deforming a soft surface, resulting in the reaction force R from the surface having a component that opposes the motion. (W is some vertical load on the axle, F is some towing force applied to the axle, r is the wheel radius, and both friction with the ground and friction at the axle are assumed to be negligible and so are not shown.