Search results
Results from the WOW.Com Content Network
In mathematical optimization, linear-fractional programming (LFP) is a generalization of linear programming (LP). Whereas the objective function in a linear program is a linear function, the objective function in a linear-fractional program is a ratio of two linear functions. A linear program can be regarded as a special case of a linear ...
The use of randomization to improve the time bounds for low dimensional linear programming and related problems was pioneered by Clarkson and by Dyer & Frieze (1989). The definition of LP-type problems in terms of functions satisfying the axioms of locality and monotonicity is from Sharir & Welzl (1992) , but other authors in the same timeframe ...
Louis de Broglie's early results on the pilot wave theory were presented in his thesis (1924) in the context of atomic orbitals where the waves are stationary.Early attempts to develop a general formulation for the dynamics of these guiding waves in terms of a relativistic wave equation were unsuccessful until in 1926 Schrödinger developed his non-relativistic wave equation.
In mathematics, Farkas' lemma is a solvability theorem for a finite system of linear inequalities. It was originally proven by the Hungarian mathematician Gyula Farkas . [ 1 ] Farkas' lemma is the key result underpinning the linear programming duality and has played a central role in the development of mathematical optimization (alternatively ...
Linear programming (LP), also called linear optimization, is a method to achieve the best outcome (such as maximum profit or lowest cost) in a mathematical model whose requirements and objective are represented by linear relationships. Linear programming is a special case of mathematical programming (also known as mathematical optimization).
Updated and free PDF version at Katta G. Murty's website. Archived from the original on 2010-04-01. Taylor, Joshua Adam (2015). Convex Optimization of Power Systems. Cambridge University Press. ISBN 9781107076877. Terlaky, Tamás; Zhang, Shu Zhong (1993). "Pivot rules for linear programming: A Survey on recent theoretical developments".
If the C*-algebra is the algebra of all bounded operators on a Hilbert space , then the bounded observables are just the bounded self-adjoint operators on .If is a unit vector of then = , is a state on the C*-algebra, meaning the unit vectors (up to scalar multiplication) give the states of the system.
In mathematics and its applications, particularly to phase transitions in matter, a Stefan problem is a particular kind of boundary value problem for a system of partial differential equations (PDE), in which the boundary between the phases can move with time.