Search results
Results from the WOW.Com Content Network
A Poincaré plot, named after Henri Poincaré, is a graphical representation used to visualize the relationship between consecutive data points in time series to detect patterns and irregularities in the time series, revealing information about the stability of dynamical systems, providing insights into periodic orbits, chaotic motions, and bifurcations.
A two-dimensional Poincaré section of the forced Duffing equation. In mathematics, particularly in dynamical systems, a first recurrence map or Poincaré map, named after Henri Poincaré, is the intersection of a periodic orbit in the state space of a continuous dynamical system with a certain lower-dimensional subspace, called the Poincaré section, transversal to the flow of the system.
A gas network is in the steady state when the values of gas flow characteristics are independent of time and system described by the set of nonlinear equations. The goal of simple simulation of a gas network is usually that of computing the values of nodes' pressures, loads and the values of flows in the individual pipes.
Phase spaces are easier to use when analyzing the behavior of mechanical systems restricted to motion around and along various axes of rotation or translation – e.g. in robotics, like analyzing the range of motion of a robotic arm or determining the optimal path to achieve a particular position/momentum result.
The flow profiles was first derived by John R. Womersley (1907–1958) in his work with blood flow in arteries. [1] The cardiovascular system of chordate animals is a very good example where pulsatile flow is found, but pulsatile flow is also observed in engines and hydraulic systems, as a result of rotating mechanisms pumping the fluid.
If is a hyperbolic periodic point, the stable manifold theorem assures that for some neighborhood of , the local stable and unstable sets are embedded disks, whose tangent spaces at are and (the stable and unstable spaces of ()), respectively; moreover, they vary continuously (in a certain sense) in a neighborhood of in the topology of () (the ...
Thus simple harmonic motion is a type of periodic motion. If energy is lost in the system, then the mass exhibits damped oscillation. Note if the real space and phase space plot are not co-linear, the phase space motion becomes elliptical. The area enclosed depends on the amplitude and the maximum momentum.
A periodic motion is a closed curve in phase space. That is, for some period, ′ = (,), = (). The textbook example of a periodic motion is the undamped pendulum.. If the phase space is periodic in one or more coordinates, say () = (+), with a vector [clarification needed], then there is a second kind of periodic motions defined by