Search results
Results from the WOW.Com Content Network
Optical lift is a component of force imparted from uniform light. First CP1 fabricated flying carpets. The ability of light to apply pressure to objects is known as radiation pressure, which was first postulated in 1619 and proven in 1900. This is the principle behind the solar sail, which uses light radiation pressure to move through space.
The optical force is a phenomenon whereby beams of light can attract and repel each other. The force acts along an axis which is perpendicular to the light beams. Because of this, parallel beams can be induced to converge or diverge. The optical force works on a microscopic scale, and cannot currently be detected at larger scales.
The backward acting force of pressure exerted on the front surface is thus larger than the force of pressure acting on the back. Hence, as the resultant of the two forces, there remains a force that counteracts the motion of the plate and that increases with the velocity of the plate. We will call this resultant 'radiation friction' in brief."
When a narrow beam passes through a volume, the beam will lose intensity due to two processes: absorption and scattering. Absorption indicates energy that is lost from the beam, while scattering indicates light that is redirected in a (random) direction, and hence is no longer in the beam, but still present, resulting in diffuse light.
A continuous beam lends itself to thermal rockets, photonic thrusters and light sails, whereas a pulsed beam lends itself to ablative thrusters and pulse detonation engines. [ 28 ] Bearing – In navigation , bearing is the horizontal angle between the direction of an object and another object, or between it and that of true north.
Light, or more generally an electromagnetic wave, carries not only energy but also momentum, which is a characteristic property of all objects in translational motion. The existence of this momentum becomes apparent in the "radiation pressure " phenomenon, in which a light beam transfers its momentum to an absorbing or scattering object, generating a mechanical pressure on it in the process.
In optics, the complex beam parameter is a complex number that specifies the properties of a Gaussian beam at a particular point z along the axis of the beam. It is usually denoted by q . It can be calculated from the beam's vacuum wavelength λ 0 , the radius of curvature R of the phase front , the index of refraction n ( n =1 for air), and ...
The equations below assume a beam with a circular cross-section at all values of z; this can be seen by noting that a single transverse dimension, r, appears.Beams with elliptical cross-sections, or with waists at different positions in z for the two transverse dimensions (astigmatic beams) can also be described as Gaussian beams, but with distinct values of w 0 and of the z = 0 location for ...