Search results
Results from the WOW.Com Content Network
We do not intend the term "unlikely" to imply an event will not happen. We use "probably" and "likely" to indicate there is a greater than even chance. We use words such as "we cannot dismiss", "we cannot rule out", and "we cannot discount" to reflect an unlikely—or even remote—event whose consequences are such it warrants mentioning.
Probability: Theory and Examples (PDF). Cambridge Series in Statistical and Probabilistic Mathematics. Vol. 49 (5th ed.). Cambridge New York, NY: Cambridge University Press. ISBN 978-1-108-47368-2. OCLC 1100115281
Probability: Theory and Examples (PDF). Cambridge Series in Statistical and Probabilistic Mathematics. Vol. 49 (5th ed.). Cambridge New York, NY: Cambridge University Press. ISBN 978-1-108-47368-2. OCLC 1100115281
The law of truly large numbers (a statistical adage), attributed to Persi Diaconis and Frederick Mosteller, states that with a large enough number of independent samples, any highly implausible (i.e. unlikely in any single sample, but with constant probability strictly greater than 0 in any sample) result is likely to be observed. [1]
The binomial test is useful to test hypotheses about the probability of success: : = where is a user-defined value between 0 and 1.. If in a sample of size there are successes, while we expect , the formula of the binomial distribution gives the probability of finding this value:
In statistics, sampling bias is a bias in which a sample is collected in such a way that some members of the intended population have a lower or higher sampling probability than others. It results in a biased sample [1] of a population (or non-human factors) in which all individuals, or instances, were not equally likely to have been selected. [2]
As the size of the combined sample increases, the size of the likelihood region with the same confidence shrinks. Eventually, either the size of the confidence region is very nearly a single point, or the entire population has been sampled; in both cases, the estimated parameter set is essentially the same as the population parameter set.
For example, the result of a significance test depends on the p-value, the probability of a result as extreme or more extreme than the observation, and that probability may depend on the design of the experiment. To the extent that the likelihood principle is accepted, such methods are therefore denied.