enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sound - Wikipedia

    en.wikipedia.org/wiki/Sound

    The speed of sound depends on the medium the waves pass through, and is a fundamental property of the material. The first significant effort towards measurement of the speed of sound was made by Isaac Newton. He believed the speed of sound in a particular substance was equal to the square root of the pressure acting on it divided by its density:

  3. Wave - Wikipedia

    en.wikipedia.org/wiki/Wave

    The speed at which a resultant wave packet from a narrow range of frequencies will travel is called the group velocity and is determined from the gradient of the dispersion relation: = In almost all cases, a wave is mainly a movement of energy through a medium.

  4. Speed of sound - Wikipedia

    en.wikipedia.org/wiki/Speed_of_sound

    The speed of sound for pressure waves in stiff materials such as metals is sometimes given for "long rods" of the material in question, in which the speed is easier to measure. In rods where their diameter is shorter than a wavelength, the speed of pure pressure waves may be simplified and is given by: [ 11 ] : 70 c s o l i d = E ρ ...

  5. Acoustic theory - Wikipedia

    en.wikipedia.org/wiki/Acoustic_theory

    Acoustic theory is a scientific field that relates to the description of sound waves.It derives from fluid dynamics.See acoustics for the engineering approach.. For sound waves of any magnitude of a disturbance in velocity, pressure, and density we have

  6. List of equations in wave theory - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in_wave...

    The phase velocity is the rate at which the phase of the wave propagates in space. The group velocity is the rate at which the wave envelope, i.e. the changes in amplitude, propagates. The wave envelope is the profile of the wave amplitudes; all transverse displacements are bound by the envelope profile.

  7. Stokes's law of sound attenuation - Wikipedia

    en.wikipedia.org/wiki/Stokes's_law_of_sound...

    In acoustics, Stokes's law of sound attenuation is a formula for the attenuation of sound in a Newtonian fluid, such as water or air, due to the fluid's viscosity.It states that the amplitude of a plane wave decreases exponentially with distance traveled, at a rate α given by = where η is the dynamic viscosity coefficient of the fluid, ω is the sound's angular frequency, ρ is the fluid ...

  8. Michelson–Morley experiment - Wikipedia

    en.wikipedia.org/wiki/Michelson–Morley_experiment

    By analyzing the return speed of light in different directions at various different times, it was thought to be possible to measure the motion of the Earth relative to the aether. The expected relative difference in the measured speed of light was quite small, given that the velocity of the Earth in its orbit around the Sun has a magnitude of ...

  9. Sound speed profile - Wikipedia

    en.wikipedia.org/wiki/Sound_speed_profile

    Figure 1. Table 1's data in graphical format. Although given as a function of depth [note 1], the speed of sound in the ocean does not depend solely on depth.Rather, for a given depth, the speed of sound depends on the temperature at that depth, the depth itself, and the salinity at that depth, in that order.