Search results
Results from the WOW.Com Content Network
In mathematics, F 4 is a Lie group and also its Lie algebra f 4. It is one of the five exceptional simple Lie groups. F 4 has rank 4 and dimension 52. The compact form is simply connected and its outer automorphism group is the trivial group. Its fundamental representation is 26-dimensional.
Additional Mathematics in Malaysia—also commonly known as Add Maths—can be organized into two learning packages: the Core Package, which includes geometry, algebra, calculus, trigonometry and statistics, and the Elective Package, which includes science and technology application and social science application. [7]
In mathematics, Appell series are a set of four hypergeometric series F 1, F 2, F 3, F 4 of two variables that were introduced by Paul Appell () and that generalize Gauss's hypergeometric series 2 F 1 of one variable.
In mathematics, a free module is a module that has a basis, that is, a generating set that is linearly independent.Every vector space is a free module, [1] but, if the ring of the coefficients is not a division ring (not a field in the commutative case), then there exist non-free modules.
Undergraduate Texts in Mathematics (UTM) (ISSN 0172-6056) is a series of undergraduate-level textbooks in mathematics published by Springer-Verlag.The books in this series, like the other Springer-Verlag mathematics series, are small yellow books of a standard size.
In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics.
Graduate Texts in Mathematics (GTM) (ISSN 0072-5285) is a series of graduate-level textbooks in mathematics published by Springer-Verlag.The books in this series, like the other Springer-Verlag mathematics series, are yellow books of a standard size (with variable numbers of pages).
In mathematics, an injective function (also known as injection, or one-to-one function [1]) is a function f that maps distinct elements of its domain to distinct elements of its codomain; that is, x 1 ≠ x 2 implies f(x 1) ≠ f(x 2) (equivalently by contraposition, f(x 1) = f(x 2) implies x 1 = x 2).